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Abstract. We aim at systematically developing a battery of principled
methods to generate behaviours useful to achieve a viable RoboCup 3D
gameplay.

behaviours. This is particularly interesting and challenging in humanoids
since any possible tactical, strategical or cooperative aspects can only be
successfully tackled once the basic skills are in place.

The construction of basic skills in humanoids is usually an intricate busi-
ness that requires a large amount of hand-tuning. We aim to develop a
systematic path towards reducing this amount of handtuning both on
the perception as well as the actuation side.

We approach this by combining principled methods, many grounded in
information-theory, some in well-known Kalman- and particle-filtering,
as well as hand-coded components. The long-term goal is to ultimately
replace the hand-crafted structuring of the code by learnt frameworks.
This Team Description Paper discusses the aspects the Bold Hearts team
currently concentrates upon.

1 Base and Locomotion

Team Bold Hearts has competed in the RoboCup Soccer Simulation league since
2003. The first two years the team participated in the 2D competitions, in 2005
it joined the 3D community. At the beginning of 2009 a full restart of the team
was initiated, after attracting Sander van Dijk to the team, former member of
the successful team Little Green BATS1. To get the Bold Hearts up to steam
quickly, the new code is based on the libbats library released by the Little
Green BATS2.

A simple open loop oscillator model, based on [13], and similar to that re-
leased by the Little Green BATS, is momentarily used as a gait generator. This
already results in a fast walking behaviour, however the lack of using any sensory
feedback leaves open several possibilities for enhancing stability.

Firstly, we attempt to handle sideways stability. In [13] a method is presented
to couple the phase of the oscillator to the natural phase of the robot’s dynamics.
The underlying idea is that this natural phase φr can be inferred from the current

1 See http://www.littlegreenbats.nl/
2 See http://www.launchpad.net/littlegreenbats/



location of the Centre Of Pressure (COP), xCOP , and its velocity, ẋCOP :

φr = − arctan(
ẋCOP

xCOP
). (1)

This is then combined with the oscillator’s static rate of change ωc to determine
the rate of change of the phase of the walking gait:

φ̇c = ωc + Kc sin(φr − φc), (2)

where Kc is a coupling constant, which determines the strength of the coupling.
When set to 0, the model reduces to a fully open loop controller.

Initial experiments have shown that the Force Resistance Preceptor used in
the simulation has poor resolution, affecting the usability of the COP measure
and thus the effectiveness of the phase coupling. To overcome this, we research
the effect of different stability measures to replace the COP in (1), most notably
the Zero-Rate of Angular Momentum (ZRAM) point, introduced by [4]. This
measure takes into account additional postural information, resulting in a more
detailed stability indication. Experiments are currently being done to test the
usefulness of the ZRAM-point for phase coupling quantitatively.

Besides lateral stability, another important issue to handle is anterior/posterior
stability. Currently, a basic method is used to lean the torso in the direction of
movement to counteract angular momentum caused by the walking gait:

f = min(
v(t)

vmax

aforward(t)

aside(t)
, 1) (3)

θ(t) = f · θmax, (4)

where v(t) is the agent’s velocity at time t, vmax its maximum velocity, a its
acceleration, θ(t) the added torso pitch and θmax the maximum torso pitch.
Efforts are under way to make this method more adaptive and effective, using
reinforcement learning methods and stability measures like the ZRAM-point.

2 General Approach

Learning, specifically reinforcement learning, has been part of the RoboCup
endeavour for a long time [18, 16, 1, 12]. Reinforcement learning methods are of
interest because of their generality and mathematical grounding. They are also
quite successful in nontrivial problems [17]; in conjunction with kernel methods,
they can address even larger problems in a highly efficient way [2, 8, 7, 6].

Still, the problems to address are quite large (and large-dimensional). How-
ever, realistic embodied agents offer a selection of possible partial decompositions
[5]. There is significant indication that Shannon information can be a powerful
indicator of where “interesting” properties of the environment lie. The use of
information-theoretic (or information-theoretically motivated) decompositions is
a natural while computationally expensive approach. [3] It has been shown that



it can lead to self-organized feature extraction [10], sensoritopic map formation
[14], or identify interesting states in state space [11].

Here, we have several tasks for which we will use informational approaches.
The current server dynamics contain limited vision and noise. Combined with a
doubling of the amount of players, intelligent vision is an important issue. Part of
it will be covered by conventional Kalman-filter approaches. However, we intend
to use novel informational principles to address the active-vision task imposed
through the limited vision. For this, we will use the novel Infotaxis principle [19]
to guide actions to identify objects of importance such as ball, goal and other
players. Section 3 will give a formal description of our use of this principle in
localization, the first use of it in robot control, and the research we will follow
after this first step.

3 Active Vision Through Infotaxis

One of the new challenges introduced in 2009 for the Robocup 3D Simulation
teams are the restrictions placed on the vision sensor. The previous two years the
simulated robots were equipped with perfect 360-degrees omni vision cameras,
making the environment fully accessible. From this year, however, a restricted
vision sensor is introduced, similar to that used in the spheres version of the
simulator until 2006. This sensor has a range of 120 degrees on both the hori-
zontal as the vertical axis and supplies noisy data about the objects within its
field of sight. The next sections describe ways we use and directions of research
to handle this new challenge.

3.1 Localization

We supply the agents with a localization mechanism that maintains their global
location in world coordinates. Many tasks can be achieved with only relative
position information, for instance to kick the ball into a goal the relative position
of the agent to the ball and to the goal is sufficient. Global coordinates however
make it easier for the agent to deduce more about the world, like the trajectory of
the ball and whether the team is in an attack or defence situation. In this section
we will describe the Kalman filter localization method, a traditional method used
to solve prediction problems, as described in [9] and [21].

With this method, the agent’s estimated location is described by a multi-
variate normal distribution N(x, Σ) with means x, here a 3-dimensional vector
depicting the agent’s x, y and z coordinates in the field, and covariance matrix
Σ. After each time step this estimate is refined in two steps: first a prediction

is made based on the dynamics of the environment and the agent’s actions,
secondly this prediction is updated by integrating observations.

Predict In the prediction step at timestep k the mean xk|k−1 and covariance
matrix Σk|k−1, where (·)k|l means ’at timestep k, given all observations up to



and including timestep l’, are determined as follows:

xk|k−1 = Axk−1|k−1 + Buk−1 (5)

Σk|k−1 = AΣk−1|k−1A
T + Q (6)

where A is the state transition model relating the state of the previous timestep
to that of the current timestep, uk is the control vector at timestep k reflecting
the agent’s actions and Q is the process noise.

For now we assume A = I, where I is the identity matrix, indicating that
there is no effect on the agent’s location besides its actions. Later on this can
be extended by appending the agent’s velocity to x. Also, the input control is
defined in world coordinates, so B = I. This results in the simplified equations:

xk|k−1 = xk−1|k−1 + uk−1 (7)

Σk|k−1 = Σk−1|k−1 + Q (8)

Update The update step uses observations of landmarks at the current timestep,
zk, to refine the estimate:

Kk = Σk|k−1H
T (HΣk|k−1H

T + Rk)−1 (9)

xk|k = xk|k−1 + Kk(zk − Hxk|k−1) (10)

Σk|k = (I − KkH)Σk|k−1 (11)

where H is the observation model relating an observation to a location world
coordinates and Rk is the observation noise covariance matrix. K is the gain or
blending factor that minimizes the a posteriori error covariance. Note that the
observation noise model depends on the current timestep, since the noise when
observing far away landmarks is larger than with nearer objects.

The observations are defined in the global coordinate system, so H = I,
resulting in the simplifications:

Kk = Σk|k−1(Σk|k−1 + Rk)−1 (12)

xk|k = xk|k−1 + Kk(zk − xk|k−1) (13)

Σk|k = (I − Kk)Σk|k−1 (14)

3.2 Single-Landmark Observations

As mentioned in the previous section, an observation consists of agent coordi-
nates in the global coordinate system. These can be obtained through triangu-
lation or trilateration of the observed locations of several landmarks. However,
the gyroscopic sensor of the agent gives sufficient information to achieve an ob-
servation by using only a single landmark.

To achieve this, we maintain the current rotation matrix Tk of the agent
relative to the field. After beaming we set Tk = I. In all subsequent timesteps
we update the matrix using the angular velocity measurement θ̇k, given by the



gyroscopic sensor. Firstly, the previous rotation estimate is used to transform
this measurement from the local to the global coordinate frame:

θ̇′k = Tk−1 θ̇k (15)

Based on this a rotation matrix Θk is constructed, describing the rotation since
the last time step in the global coordinate frame. Finally, this matrix is used to
obtain the new global rotation matrix estimate:

Tk = Θk ·Tk−1 (16)

With this new estimate a local observation can be transformed into a global
location observation, enabling accurate localization based on a single landmark.

3.3 Information Gathering

During a match an agent that focusses solely on the ball will receive sufficient
observations of landmarks to be able to localize effectively using the method
described in the previous section. However, there are more interesting objects
in the field. Especially with the current increase in team size, coordination and
keeping track of the opponent’s players becomes an important issue, hindered
by the fact that an agent can only pay attention to a small part of the field at
the same time. Therefore we search for active vision strategies which optimize
the amount of useful information gathered by the agent.

To do this we will use the infotaxis strategy which ‘locally maximizes the
expected rate of information gain’[20]. The information gain resulting from an
observation can be measured by the decrease of the entropy H(f) of the distri-
bution f(x). In our case of multivariate normal distribution we have:

f(x) =
1

(2π)N/2 |Σ|
1/2

e−
1

2
(x−µ)⊤Σ−1(x−µ) (17)

H(f) = −

∫ ∞

−∞

f(x)log(f(x))dx (18)

= log

(

√

(2 π e)N |Σ|

)

, (19)

where N is the number of dimensions, in our case N = 3.
The problem we need to solve is which action a ∈ A of the possible actions

A to take to maximize the decrease in entropy:

ak = arg max
a

−∆aH(X) (20)

= arg min
a

H(X)k+1|a − H(X)k (21)

= arg min
a

H(X)k+1|a (22)

= arg min
a

log

(

√

(2 π e)N
∣

∣Σk+1|k+1,a

∣

∣

)

(23)



= argmin
a

∣

∣Σk+1|k+1,a

∣

∣ (24)

= argmin
a

∣

∣I − (Σk|k + Q)(Σk|k + Q + Rk+1|a)−1
∣

∣ (25)

3.4 Future Directions

There are several ways to continue from here and multiple problems we are or
will be researching. Firstly, the choice of set of actions A is important to get
the best results. If for instance it consists of ‘turn head n degrees left/right’ the
agent may focus on a single set of landmarks, unwilling to sweep over empty
areas, even though that may lead to observing better landmarks.

Secondly, the current model of infotaxis assumes that all information is
equally valueble. However, in football this is not the case; information about
the location of the ball may be worth more than where your keeper is. More-
over, the relative value of different types of information could change during a
game. A tradeoff has to be made to decide on which target to focus, e.g. by
limiting A to actions that will not loose sight of the ball or by alternating be-
tween the targets based on the current value of the information about each to
the agent. To optimize the latter case we will use another information theoret-
ical principle, relevant information, which measures the amount of information
present in a random variable that is relevant for an agent’s optimal strategy [15].
This amount gives an indication which variable should get more attention.
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