
Bahia3D - A Team of 3D Simulation for Robocup?

Adailton de J. Cerqueira Jr., Adriano Veiga, Diego Frias, and Marco A. C. Simões

Bahia State University (ACSO/UNEB), Salvador, BA, Brazil
{adailton.junior, profpardal88, diegofriass}@gmail.com,

msimoes@uneb.br

Abstract. One of the major challenges in the development of a soccer playing
team for RoboCup Simulation League 3D, for beginner groups, is to implement
movements. In this paper we introduce Bahia3D new architecture and also fo-
cus on our movement generation model. Additionally, we describe work under
development.

1 Introduction

Bahia3D is developed by the Bahia Robotics Team (BRT) group, part of the Computer
Architecture and Operating Systems group 1, that focus on investigating application
of artificial intelligence methods on autonomous robots. BRT has been participating
of other RoboCup leagues (Simulation 2D, Mixed Reality) since 2007, showing good
results specially within Mixed Reality, in which it won third place at RoboCup 2009.
This is the second year of work with 3D. In RoboCup 2009, the team has achieved 16th
place in the league’s overall ranking.

In the last year, our first, we have decided to develop over a base team, improving its
basic skills. We therefore used Little Green Bats [1]. We adopted such approach since
BRT had no prior experience with 3D basic challenges on movements. In this same
year, however, because of the change on the vision system, we choose begin team’s
development from the very basis, since Little Green Bats base did not cover the new
vision model.

In section 2 we explain our agents’ new architecture. Section 3 shows two main
approaches we applied to creating robots’ movements: (i) Microsoft Robotics Studio [2]
environment based, explained in section 3.1, and (ii) feedback approach, described in
section 3.2. Section 4 describes the mathematical model designed to create movements.
After that, we point out, in section 5 major obstacles encountered during our agent’s
development. Finally, we present achieved results and future works in section 6.

2 Architecture

The choice of not using the Little Green Bats base code, beyond the fact that it doesn’t
cover the new vision model was due to a lack of comprehension on the base team’s

? This project is partially funded by UNEB, FAPESB and CNPQ
1 from Portuguese Núcleo de Arquitetura de Computadores e Sistemas Operacionais (ACSO)



architecture. Therefore, a new architecture was designed. Such new architecture pro-
vides lower module coupling. Figure 1 illustrates our new architecture. Our agent is
divided in four modules: Sensor, Actuator, Agent and Brain. Each module has specific
functionalities within agent’s operation.

Fig. 1. Agent’s architecture

The Sensor is responsible for capturing message sent by server and for converting it
into data that the agent understands. Upon receiving a message, Sensor extracts useful
information and stores it in the agent’s data base.

The Actuator’s role is to build and send messages to the server. The Agent informs
the chosen command as well as its corresponding value, and the Actuator, on the end of
the cycle, assembles the message to be sent to the server.

The Agent module works like an intermediary control module, receiving abstract
actions from Brain and converting them into a particular command. For instance, the
Brain sends action “kick ”and the Agent translates it to a specific command, inform-
ing which joints are involved in such action and corresponding velocity so it can be
achieved.

It is in the Brain where all the agent’s reasoning is located. Internally, this module
is divided into three interrelated layers, as can be seen in figure 2.

The Reactive level is the most basic within the Brain, dealing with execution of
simpler and less reasoning actions, and executing actions arising from higher levels
decisions. The Planner is responsible for analyze information received from server and
for decision making based on such analysis. Subsequently, we have the Cognitive level,
that plans and manages goals the team must follow, based on information acquired
during the match.

We must remark that the last two layers (Planner and Cognitive) are still to be de-
veloped, and that with their implementation we expect provide a structure so the team
can work as a collective intelligence.

3 Movement

One of the major challenges while elaborating a 3D simulated agent is making complex
movements from the conjoined moves of each joint. To overcome this challenge, we’ve
built a movements planning model based on MicroSoft Robotics Studio approach. The



Fig. 2. Brain’s layers division

movements are controlled by a feedback model, which aims to keep robots move within
planned boundaries.

3.1 Microsoft Robotics Studio based approach

The MicroSoft Robotics Studio (MSRS) simulation environment also has a simulated
model of NAO robot. The simulator has some pre-defined moves and a base source
code, to aid quick development of new teams.

Some months before beginning to work with RoboCup simulation 3D, the team had
tried the MSRS environment and acquired some experience with it. Thus, in order to
solve the robots’ basic movements making within Simspark, we’ve decided to adopt an
approach based on MSRS pre-defined movements.

A movement in MSRS consists of a sequence of static postures, separated by a
certain time interval between them. Each pose determines each joint’s angle related to
its own axis. Nevertheless, NAO’s simulations on MSRS and Simspark differ by some
attributes, e.g., minima and maxima angles, joint’s axis or orientation.

Thereby, we’ve made a planning model of movements based on MRSR’s poses
sequence approach and adapted some basic moves to the Simspark simulation.

Still unsatisfied with the results, we’ve decided to improve movements, smooth-
ing pose transitioning. We therefore used high frequency noise reduction filtering by
successive derivative smoothing procedure.

3.2 Feedback Approach

As well as in the real environment, simulated environment also presents noises, so ac-
tions will not be always precisely executed. Therefore, to ensure previously described
movement planning to be reasonably executed, we used the feedback method.



Through this method we do the movement control, dynamically readjusting the
movement planning according to robot’s actual situation. This method receives as input
desired angles and velocities (i.e., values contained in the planning) and actual angles
(values sent by the server) of each joint. Thereafter, method’s output is the velocity in
that each joint must move in order to the robot’s whole movement to be as close as
possible from previous planned.

4 Mathematical Model

The velocity of the movement of the robot when it moves is the result of a continuos
variation of the angular velocities of the joints. The angular velocities of each joint must
be specified at equidistant time steps ti = ti−1 + ∆t, i = 1, 2, ..., n. Here τ = n∆t is
the duration of the movement. At each time step the position (α) of each joint j changes
in wj∆t, that is αi = αi−1 + wj

i ∆t, where wj
i = wj(ti) is the angular velocity of the

joint set at time step ti. As initial condition we consider that at time t0 the joint j was
in a known position αj

0 and have a known velocity wt
0.

4.1 Physical constraints

Joint position, velocity and acceleration are expected to be constrained.

Position For each joint j we have αj ∈ [αj
min, αj

max]. In a discrete domain the position
of the joint at time step i must satisfy αj

min, 6 αj
i−1+wj

i ∆t 6 αj
max. That is, assuming

that the position at time step i− 1 satisfied the constraint we have that

αj
min − αj

i−1

∆t
6 wj

i 6
αj

max − αj
i−1

∆t
(1)

Velocity The velocity wj = dαj

dt will be assumed to vary in the same range for all
joints, that is wj ∈ [wmin, wmax], ∀j, where wmin ≤ 0 and wmax ≥ 0, not both null.
In a discrete domain the instantaneous velocity at time step i must satisfy the constraint

wmin 6 wj
i 6 wmax (2)

The maximum and minimum velocities can be estimated from the reverse engineer-
ing data, by looking for extreme velocity values in a family of custom movements.

Acceleration The acceleration of the joints λj = dwj

dt must also be constrained in order
to obtain smoother and natural movements. We will assume the same accelaration limits
for all joints, that is, λj ∈ [λmin, λmax], ∀j. In a discrete domain the instantaneous

acceleration at time step i is given by λj
i =

wj
i−wj

i−1
∆t , ∀i. That is assuming that the

velocity at time step i− 1 satisfied the constraint we have that

wj
i−1 + ∆tλmin 6 wj

i 6 wj
i−1 + ∆tλmax (3)



The maximum and minimum acceleration can be estimated from the reverse engi-
neering data, by computing the second derivatives of the angle (or the first derivative of
the velocities) and looking for extreme values in a family of custom movements.

Combining constraints Resuming we have

Wmin
i 6 wj

i 6 Wmax
i , ∀i (4)

where

Wmin
i = max(wmin,

αj
min − αj

i−1

∆t
, wj

i−1 + ∆tλmin) (5)

and

Wmax
i = min(wmax,

αj
max − αj

i−1

∆t
,wj

i−1 + ∆tλmax) (6)

4.2 Dynamics

Consider an elementary movement k (for example “walk ahead”) initiating at time t0.
Assume the corresponding angular velocity function for joint j given by ωk,j?

i , i =
1, 2, ..., nk for a reference time step ∆t?, with initial condition αk,j(t0) = αk,j

0 and
ωk,j(t0) = ωk,j

0 .
Considering that the whole movement is given by the time integral of ω(t) we have

Ωk,j? = 0.5∆t?
nk∑

i=1

(ωk,j?
i + ωk,j?

i−1 ) = 0.5∆t

nk∑

i=1

(ωk,j
i + ωk,j

i−1) (7)

Ωk,j? = ∆t

(
ωk,j

0 + ωk,j
nk

2
+

nk−1∑

i=1

ωk,j
i

)
(8)

Let τk? = ηk∆t? be the reference duration of the movement k. Then by changing
∆t ≶ ∆t? we can change the velocity of the movement, but satisfying the constraint 7.
It can be noticed that this is achieved whenever ∆tωk,j

i ≡ ∆t?ωk,j?
i , ∀i, that is setting

ωk,j
i ≡ (∆t?/∆t)ωk,j?

i , ∀i (9)

subject to contraint 4.

4.3 Syncronizing

Most control systems has an update period that define the smallest time step ∆tmin.
For simplicity and robustness it is desirable that time steps ∆t be a multiply of such
minimum time step, that is, ∆t = m∆tmin, for m > 1. The maximum achievable
velocity is obtained for m = 1.



5 Difficulties Encountered

A major difficulty while developing Bahia3D was the agent’s big performance disparity
when running locally or remotely, to the server. Usually, a local connection would result
in a better performance. We also realized that such performance presented big variance
according to the computer machine on which tests were done. However, a better equip-
ment did not meant, necessarily, a better performance by our agent.

We realized that our agent’s thread responsible for receiving messages from server
sometimes took much more than the 20ms of server cycle (see figure 3). That made our
agent receive message with some delay, in relation to the server, and thus lead it to mess
up all movement planning. We then suspected of some lack of synchronization between
our agent’s threads, or within the server timer.

Fig. 3. Bad performance - Cycle x Duration graphics

We reviewed the way our threads were synchronized, how is it that occurs syn-
chronization between server and agents and improved our algorithms. Performance
increased substantially (see figure 4), but now the situation has been reversed: when
remotely connected the agent shows a great performance, while locally it’s quite unsta-
ble. The computer machine involved still show performance interference, but without
linear relation with higher processing capacity.

We are still trying to discover exactly what causes such instability when we connect
our agents, specially through local connections. We expect a performance improvement
after the new timer implemented on server (rcssserver3d 0.6.3), although we couldn’t
actually test it yet, due to ODE library and new server version conflicts within our
machine server.



Fig. 4. Good performance - Cycle x Duration graphics

6 Results and Future Work

We obtained good results with our movement model, since our agent is now able to
carry out with basic movements, such as walking, rising up and kicking, in a smooth
and stable manner. Our next challenge, relating to movements, is to make them more
flexible. For instance, turn the walk move so flexible we can choose step size and ve-
locity during the match, in order to adapt to the most variable situations.

With basic movements implemented, we may step forward to implement high level
decisions, taking into account game soccer strategies. And, due to our agents’ architec-
ture, gradually increment high level reasoning models will occur in a natural manner,
since it was designed to accomplish that.

References

1. van Dijk, S., Klomp, M., Neijt, B., Platje, M., van de Sanden, M.: Little green bats humanoid
3d simulation team description paper. In: Robocup Proceedings, Robocup (2008)

2. Microsoft: Microsoft robotics studio. http://www.microsoft.com/Robotics/


