
MRL 3DDevelopment Team Description Paper

Farid Haji Zeinalabedin, Hamed Rafi, Ebrahim Yazdi

Mechatronics Research Laboratory, Qazvin Azad University, Qazvin, Iran
{farid.zeinalabedin, hamed.rafi, abraham.yazdi}@gmail.com

Abstract. This paper describes MRL3D Development team's modified version
of 3d soccer simulation engine, jssserver3d. Based on Java's cross-platform
technology, the engine simulates a multi agent football match, with capability
of adapting new humanoid robot designs. It supports over-network IP-based
connections for agents and monitors, regardless of the programming language
and platform architecture. A coach agent can also be connected to the
simulation engine for each team. And the system is setup for a referee agent to
connect and judge the game. The simulator uses selectable PhysX and ODE as
the physics engines, but new engines could be easily added. Besides an external
3d monitor is also implemented using the Irrlicht engine. A user friendly GUI is
provided with the engine to configure the simulation circumstances, with
respect to Java technology.

1 Introduction

Based on last year’s effort in creating a soccer simulator, we continued to work on the
project and modified some parts and added lots of new features. The need for secure
and precise tracking of agent processes and synchronizing actions, led to modification
and improvement of JSynchronizer. Extendibility, reusability and adaptation which
are presented by software design enabled us to use different physics engines and
connecting different agents e.g. player and coach. Built over Model-View-Controller
(MVC) design pattern, the server is an event based environment that takes advantage
of user interactions for runtime and offline reconfigurations.

Considering the goal of 2050, changing to humanoid simulation is inevitable. Yet
switching from a sphere agent simulator directly into a fully structured humanoid
robot one requires enough effort. For a simulator, fair play not only involves process
management etc. also requires a talented referee that is able to detect humanoid types
of faults. Besides, physical characteristics of the robot should be well designed. So
because of adaptation, new robot models and new physic engines can be added or
implemented as easy as possible.

The project consists of three main subprojects, a process synchronizer that brings
up a multi-process environment and keeps track of agent activities, and a soccer
simulation engine and controller that uses the user selected physic engine. The last
module is a cross platform C++ implemented monitor using Irrlicht engine which
connects to the server via UDP protocol on multicast port. Here comes a summary of
what we did last year. Then the improvements and modifications for the china 2008
competitions are introduced.

1.1 Java Technology

Taking advantage of Java's cross platform technology makes Jssserver3d capable of
being run in all POSIX, Win32 and OSX platforms, with obviously no different
results. In fact the simulator can be run over a network consisting of different
platforms. A process' CPU usage is monitored by means of Java native interface
(JNI). All required libraries are written in C/C++ language regarding the host
operating system's related functions. Unlike an ordinary java program, using JNI,
jssserver3d runs almost as fast as a C/C++ written application, because it removes all
java byte code overheads except for function jumps. All client/server implementations
are done through synchronized Java threads that bring the most possible concurrency.
Java brings the possibility to combine two or more Java Technology-based
applications to create highly customized services. This is the main feature that
integrates the simulation engine and soccer controller in a client / server architecture.

1.2 Client/Server Technology

Jssserver3d is designed in client/server architecture that runs both locally and over
network. The simulation engine is divided into two parts, a server and some clients.
The server is attached to the soccer controller and remains in the server computer,
while the client part is run on the client computer over the network. It is always the
clients' responsibility to run the agents and monitor their activity. By using IP-based
protocol, regardless of the programming language or platform architecture of the
agent application, the actions from agents are sent to the server/soccer controller and
the senses are sent to the agents from the world model inside the soccer controller.
Several monitors can be connected to the soccer controller simultaneously through IP.
There is always the possibility for new monitors to be connected in the middle of a
running game.

2 New Physic Engine

Besides ODE we have worked on creating a java wrapper for Ageia PhysX engine
and importing it into Jssserver3d. The result of the efforts is a Linux and Windows
compatible version of JPhysX, the ready to use wrapper for PhysX. Because of great
performance of the engine we have tested up to 22 agents, without any crash or
miscalculation in contrast to the crashes of ODE and some lack of precision.
However, although we still support ODE, but using JPhysX is highly recommended.
The engine steps accurately for 0.02 seconds each cycle. Following are two figures
demonstrating benchmarks between seven physic engines. As can be seen, in both
cases ODE has the most computation time and error. On the other hand Novodex
PhysX is one of the two best engine, accompanying Tokamak.

Fig. 1. The computation time required to update the physics engine for the corresponding
number of stack objects

Fig. 2. The constraint error measured from the accumulated difference in the

distance between two links minus relative to the initial case

The only fact that should be taken care of is that because of different accuracy in
the engines, agent may need to use different constants, when selecting different
engines.

3 Arch

As well a
developm
be instan
done thro
before ea

Fig. 3. Im

And in
the conne
chance of
if one doe

4 JSyn

Process m
should b
manner is

JSynch
PID and C
Jssserver

hitecture Im

as adaptation,
ment in the fut
ntiated anywh
ough serialize
ach run.

mproved Clien

n case of secu
ecting proces
f cheating. M
es so, the proc

nchronizer

management a
be handled w
s as vital and i
hronizer wrap
CPU usage in
3d the oppor

mprovemen

, reusability is
ture. So we tr
ere within the
ed classes in

nt/Server Arch

urity because e
s which may

Meaning that no
cess will be ke

and tracking a
with special c
important for

ps Operating S
n user or kerne
rtunity to sim

nts

s another imp
ried to implem
e code. Also
java that brin

hitecture

each network
be one of pl

o player agen
ept sleep.

agents’ CPU u
care. Synchro
a precise simu

System depend
el times into ja

mulate a fair s

portant factor
ment independ

saving the ru
ngs an end to

connection is
layers, coach

nt can connect

usage is an O
onizing agent
ulation as a go
dent functions
ava programm
soccer match

that guarante
dent modules
untime config
o the file mo

s assigned to t
or referee, th

t to e.g. coach

OS dependent j
ts in a sense
ood physic en
s for getting a

ming language
. In near futu

es ease of
that could

guration is
odification

the PID of
here is no
h port, and

job which
e-think-act
ngine.
a process’s
 and gives
ure, when

agents have implemented time consuming skills for controlling humanoid robots, the
need for high performance computing is inevitable. But using the architecture
described above, Jssserver3d can be easily distributed among several computers to
achieve the best performance. Each computer hosts some agents of different types e.g.
coach, referee and player, using JSynchronizer. After each step the one and only one
instance of JSynchronizer besides Jssserver3d, collects all the information from other
host computers and passes the data to the simulation engine. Then the world model is
refreshed through the selected physic engine and finally the new senses are sent back
to the agents through the JSynchronizer network.

Fig. 4. JSynchronizer Log Console

In each cycle if any of the agents cannot finish its job during the predefined legal

CPU usage, that agent is kept out of the active agent list and will not be given sense in
the next step. Then using following formula the exact number of cycles the agent
should be kept slept as the punishment is calculated.

_ % _

After the PUNISHMENTCYCLES the punished agent is again put in the active list

and will be given the sensation according to the current game state. Also if an agent
does not respond in less than the timeout, that agent would automatically be killed.

5 Cssmonitor3D

Visualization is another important part that is taken care of in Jssserver3d. Thanks to
high performance and good quality of Irrlicht engine, we have implemented
Cssmonitor3D as an external monitor. Using UDP broadcast technique; monitor
information is sent over network and can be used by any client without platform and
architecture considerations. Although written in C++, Cssmonitor3D is available in
both Linux and Windows operating systems.

Considering performance and fps, the UDP client part of the application is
threaded and listener design pattern is used to update current data model. This leads to
current fps speed of about 100 for more than 10 agents on the scene. Cssmonitor3D in
completely independent from the type of simulation and the objects used, meaning
that if the robot model is changed, the monitor will automatically draw the new
model.

The protocol is easy to use and contains type of object, and the transformation data
and the unique name of that object, and makes it very easy for programmers to change
the color or texture of any specific object. Creating and importing 3d models such as
stadiums, has never been easier thanks to IrrEdit, the free and open-source scene
graph editor. Cssmonitor3D is also easily compatible with rcssserver3d using S
expression and RSG parser.

Fig. 5. Two screenshots of cssmonitor3d

Showing debug information is another advanced feature for cssmonitor3d. Running
the monitor in debug mode, will help the user to visualize some numerical
information such as agent speed vectors, positions and rotations in Cartesian or polar
coordinates.

6 Special Features

Jssserver3d incorporates design rules and patterns to deliver the best possible help for
the agent developers in case of debugging, training, new models for robots etc. The
following is a list and description for some of the features in jssserver3d.

6.1 Rcssserver3d Compatibility

Sense and action strings sent to or received from agents are just compatible to the
rcssserver3d. So, current agent developers do not need to modify their source code for
jssserver3d adaptation. The information available via the sense messages contains the
opponent positions in polar coordinates relative to the torso of the agent looking at the
scene, following current game time and state. The action commands contain the new
angle for each joint motor. And most importantly, the robot model and specification is
just the same as rcssserver3d.

6.2 Trainer

Trainer has always been a very good help in 3d soccer simulation league. To obey this
rule, jssserver3d also runs in trainer mode in which the agents can connect to the
predefined port for training environment. This mode, gives all agents the opportunity
to get the whole noise free worldmodel or any part of it in any step they want so. Such
information is very useful for learning and prediction algorithms. It helps agent
developers to determine whether their prediction algorithms work fine in comparison
to the real world events or not.

6.3 Robot Model Importer

Importing new robot models is possible using XML file, defining the structure and
joint types of the robot. We have a robot model designer tool in progress which will
be available for the 2008 competition. The tool gives the user an advanced graphical
user interface through which structured meshes such as box, sphere, and capsule can
be added to the model. Depending on the target physic engine which may be one of
ODE or PhysX, the supported types of motors and joints are available. The design
will be saved as an XML file and can be imported in jssserver3d.

References

1. IEEE, Guide to the Software Engineering Body of Knowledge, 2004
2. Patrick Riley, SPADES System for Parallel Agent Discrete Event Simulation User's Guide

and Reference Manual, 2003
3. www.java.com
4. irrlicht.sourceforge.net

