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Abstract. This paper describes the research focus and ideas incorpo-
rated in the UT Austin Villa 3D simulation soccer team entering the
RoboCup competitions in 2008. 1

1 Introduction

In this paper, we describe the agent our team UT Austin Villa is currently
developing for participating in the RoboCup 3D Simulation Soccer competition
2008. The main challenge presented by the 3D simulation league is the low-
level control of a humanoid robot with 20 degrees of freedom, which exposes the
contestants to a problem whose nature and scale are dramatically different from
those encountered in the 2D league, and indeed the earlier version of the 3D
league involving spheres. The simulated environment is a 3-dimensional world
that models realistic physical forces such as friction and gravity, in which teams of
humanoid robots compete with each other. Thus, the 3D simulation competition
paves the way for progress towards the guiding goal espoused by the RoboCup
community, of pitting a team of 11 humanoid robots against a team of 11 human
soccer players.

The approach adopted by our team UT Austin Villa to decompose agent
behavior is bottom-up in nature, comprising lower layers of joint control and
inverse kinematics, on top of which are developed skills such as walking and
turning. These in turn are tied together at the high level of strategic behavior.
Details of this architecture are presented in this paper, which is organized as
follows. Section 2 provides a brief overview of the 3D humanoid simulator. In
Section 3, we describe the design of the UT Austin Villa agent, and elaborate on
its skills in Section 4. In Section 5, we draw conclusions and present directions
for future work.

1 Portions of this paper are drawn from our earlier technical report [6].



2 Brief Overview of 3D Simulation Soccer

In the 2007 competition, the humanoid robot in the simulation was derived from
the Fujitsu HOAP-2 robot model [1]. The robot has 20 degrees of freedom: 6 in
each leg and 4 in each hand. Figure 1 shows a visualization of the robot and the
soccer field.

Figure 1. On the left is a screen shot of the robot, and on the right a view of a 2
versus 2 soccer game.

Each component of the robot’s body is modeled as a rigid body with a mass
that is connected to other components through joints. Torques may be applied to
the motors controlling the joints. A physics simulator (Open Dynamics Engine [2])
computes the transition dynamics of the system taking into consideration the ap-
plied torques, forces of friction and gravity, collisions, etc. Sensation is available
to the robot through a camera mounted in its torso, which provides information
about the positions of all the objects on the field every cycle. In the 2007 compe-
tition, noise-free visual information was provided, with an unrestricted field of
vision. The visual information, however, does not provide a complete description
of state, as details like joint orientations of other players and the spin on the
ball are not conveyed. Apart from the visual sensor, the agent also gets infor-
mation from touch sensors at the feet, collision sensors, and gyro rate sensors.
The simulation progresses in discrete time intervals with period 0.02 seconds. At
each simulation step, the agent receives sensory information and is expected to
return a 20-dimensional vector specifying torque values for the joint motors.

Since 2007 was the year the humanoid was introduced to the 3D simula-
tion league, the primary focus was on developing robotic skills such as walking,
turning, and kicking. This has itself been a challenging task, and is work still
in progress. As a consequence, the 2007 competition did not present an ideal
opportunity for the development of sophisticated high-level team behaviors. In-
terestingly, the team sizes were restricted to 2, and the games were conducted on
a smaller version of the field than the standard; this was partly because existing



computational resources were simply unable to cope with the requirements of
running large teams of agents. Each game lasted 8 minutes; tie-breaking chal-
lenges included walking to the ball as quickly as possible, and taking a penalty
kick.

The transition from the abstract “sphere” agent used until 2006 to the hu-
manoid highlights the resolve of the RoboCup soccer community to embody
intelligence in a realistic physical robot. The humanoid robot chosen for the
task is indeed challenging to program; we expect that at least in the initial
stages, significant time and effort will be devoted in developing low-level control
algorithms and skills. Nonetheless, since this is a simulation league, the overhead
involved in doing so compares very favorably with the time and labor entailed
by a similar endeavor on a real humanoid robot. Indeed, we believe that the con-
venience afforded by simulation will enable the league to soon progress to tackle
increasingly complex problems in humanoid robot behavior, possibly even ones
that are yet to be realized in work with real humanoid robots. There are numer-
ous vistas that research in the 3D humanoid simulation league is yet to explore;
these provide the inspiration and driving force behind UT Austin Villa’s desire
to participate in this league.

3 Agent Architecture

At intervals of 0.02 seconds, the agent receives sensory information from the
environment. The visual sensor provides distances and angles to different objects
on the field from the agent’s camera, which is located in its torso. It is relatively
straightforward to build a world model by converting this information about
the objects into Cartesian coordinates, particularly because visual sensation is
complete and noise-free. Once a world model is built, the agent’s control module
is invoked. Figure 3 provides a schematic view of the control architecture of our
humanoid soccer agent.
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Figure 2. Schematic view of agent control architecture.



At the lowest level, the humanoid is controlled by specifying torques to each
of its joints. We implement this through PID controllers for each joint, which
take as input the desired angle of the joint and compute the appropriate torque.
Further, we use routines describing inverse kinematics for the hands and legs.
Given a target position and pose for the foot or the palm, our inverse kinematics
routine uses trigonometry to calculate the angles for the different joints along
the hand or the leg to achieve the specified target, if at all possible. The PID
control and inverse kinematics routines are used as primitives to describe the
agent’s skills.

We found that the robot is much more stable while performing skills like
walking and turning if it is bent slightly forward (as shown in Figure 3) than
it is standing bolt upright. We maneuver the robot into such a position right
at the start of the simulation, before it can start executing any of its skills. We
elaborate on the agent’s skills in section 4.

Figure 3. The humanoid is
more stable when bent for-
ward.

Developing high-level strategy to coordinate
the skills of the individual agents is work in
progress. Given the limitations imposed by the set
of skills, we employ a simple high-level behavior
for 2 versus 2 games. We instruct the goalie to re-
main standing a little in front of the goal, and to
fall to either side to arrest a ball that is heading to-
wards the goal. The other player always attempts
to go to a position behind the ball and walk to-
wards the opponent’s goal, pushing (dribbling) the
ball ahead of it. Ideally, we would have preferred
to have the agent kick the ball towards the goal,
but unfortunately, we were are yet to implement a
reliable kicking skill.

4 Player Skills

Our plan for developing the humanoid agent consists of first developing a reliable
set of skills, which can then be tied together by a module for high-level behavior.
Needless to say, our foremost concern is locomotion. Bipedal locomotion is a well-
studied problem (for example, see Pratt [9] and Ramamoorthy and Kuipers [10]).
However, it is hardly ever the case that approaches that work on one robot
generalize in an easy and natural manner to others. Programming a bipedal walk
for a robot demands careful consideration of the various constraints underlying
it.

We experimented with several traditional approaches to program a walk for
the humanoid robot, including monitoring its center of mass, specifying trajecto-
ries in space for its feet, etc. Through a process of trial and error, we concluded
that a dynamically stable walk is more feasible than a statically stable walk
(By “dynamically stable”, we mean that the robot is balanced as long as it is
moving; by “statically stable”, we mean that the robot remains balanced even



if it stops moving abruptly.). We achieved a reasonably fast dynamically stable
walk by programming the robot to raise its left and right feet alternately (and
perfectly out of phase) to a certain height above the ground and then stretching
them back to their initial configurations. Inverse kinematics routines determine
joint angles for the feet given the target position. As the robot beats its feet up
and down, its crouched position causes it to translate forward. Interestingly, it
is more appropriate to describe this walk routine as a “run”, since there occur
points in time during its execution when both feet lose contact with the ground.

By making minor changes to our walk routine, we were able to realize other
useful skills for the robot. For getting the robot to turn, all that was required
was to orient one of its hips at a slight angle while continuing to beat its feet
up and down. Other slight variations of this basic pattern allowed for skills such
as walking sideways and walking backwards. In fact, we are able to have the
humanoid dribble the ball merely by walking “into” it; this is the only means to
propel the ball forwards in the absence of a kick routine. To stop locomotion,
the robot gradually slows down the rate at which it takes steps before coming
to a complete halt.

Two other useful skills for the robot are falling and rising from a fallen
position. We programmed the fall by having the robot bend its knee, by virtue
of which it would lose balance and fall to one side. It is not surprising that
we found it immensely more difficult to get a fallen robot to rise than to get
a standing robot to fall. In our routine for rising, the fallen robot begins to
thrash it arms and legs forward and backward until it rests on all fours with
its head facing downwards. From this position, it slowly draws its feet closer to
its arms, thereby bending significantly at the hips. When it stretches out again,
the torso and hands are lifted up, and the robot returns to its upright position.
The initial sequence of actions involving thrashing about is somewhat unnatural;
however, it serves the purpose of maneuvering the robot into a downward-facing
position. The ensuing sequence of actions to return the robot to its upright
position strongly resembles a human-like routine for standing up.

Videos of our agent’s skills are available at a supplementary web site [3].

5 Conclusions and Future Work

UT Austin Villa is pleased to be a part of the initiative of introducing a humanoid
robot in the 3D simulation league. Despite our indifferent showing in the 2007
competition, we believe that significant progress has been made all round from
the point of view of research. The simulation of a humanoid robot opens up
interesting problems for control, optimization, machine learning, and AI. The
initial overhead for setting up the infrastructure is bound to be overtaken by the
progress made through research on this important problem in the coming years.
While the main emphasis thus far has been on getting a workable set of skills
for the humanoid, it is conceivable that soon there will be a shift to higher level
behaviors as well. A humanoid soccer league with scope for research at multiple
layers in the architecture offers a unique challenge to the RoboCup community
and augurs well for the future.



UT Austin Villa has been involved in the past in several research efforts
involving RoboCup domains. Kohl and Stone [8] used policy gradient techniques
to optimize the gait of an Aibo robot (4-legged league) for speed. Stone et al. [11]
introduced Keepaway, a subtask in 2D simulation soccer [4, 7], as a test-bed for
reinforcement learning, which has subsequently been researched extensively by
others (for example, Taylor and Stone [12], Kalyanakrishnan et al. [5], and Taylor
et al. [13]). We are keen to extend our research initiative to the 3D simulation
league. Our initial focus for the 2008 competition will be on developing skills
like kicking, which we are yet to deploy on our agent, and improve the skills that
we have developed through the use of learning and optimization techniques.
Banking on a reliable set of skills, we will seek to develop higher level behaviors
like passing and intercepting.
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