
Parsian
(Amirkabir Univ. of Technology Robocup 3D Simulation Team)

Team Description for Robocup 2008

Mohammad Mehdi Korjani, Arman Sarrafi, Golnaz Ghiasi

Electrical Engineering Department,
Amirkabir University of Technology (Tehran Polytechnic)

424 Hafez Ave., Tehran, Iran
{korjani, sarrafi , ghiasi}@parsianrobotic.com

Abstract. This team description paper depicts Parsian Robotic 3D Simulation Robocup team
activities performed for preparing for Robocup 2008 3D League. This paper presents a
physical simulation of a 20 degree of freedom real biped robot model used in RoboCup 3D
Soccer Simulation League and demonstrates its application to exploring biped motion
control techniques.

Keywords: biped robot, motion control, fuzzy control, genetic algorithm.

1 Introduction

As we know, one of the main goals of Robocup competitions is to develop a footballer robot team, to beat
humans’ champion team in 2050. To achieve this overreaching goal, robotics science should improve in
different aspects. Therefore, Robocup competitions are celebrated in several leagues, each of which focuses
on some of these aspects. The humanoid league focuses on balancing biped robots and joint control to
create human-like movements and actions. In this league, because of high expenses of creation of such
robots a few team works on it. So improvements in this field will take place very slowly. Thereby we need
a simulation environment and simulated robots to decrease the expenses of our experiments. The 3D
simulation league was brought to world with this goal and is a suitable environment to test our ideas on the
control of humanoid robots.

Because balancing of robots and making human like actions is the main challenge in this league, Parsian
team has focused on these aspects and the following is our ideas about them.

In Section 2 artificial intelligence subsystem of our robots is described including the decision maker and
the behavior based layer, localization is discussed in Section 3, structure of the team is presented in section
4, followed by a description of our development tools in section 5. This team description paper is finalized
in section 6 with a conclusion.

2 Artificial intelligence subsystem

Artificial intelligence subsystem is divided into two parts. In the “Behavior based Layer” each robot
conducts behaviors such as walking, kicking, standing up and stopping the ball. A robot takes current game
state and target game state (robots and ball position, velocities, and robot orientation) as input from
Decision making layer and generates the tasks to switch from the current state to the target state. It gets
robots and ball position, velocities, and robot orientation as current state and generates the target state.
Then it submits the current and beginner state of robots to switch to target state with the Behavior based
Layer.

2.1 Decision Making Layer

Decision making layer allows the robot to move on the field and set special action such as stand up and
kick behavior. The output of this layer is one of the behaviors that must be shown? in the behavior based
layer.

In this section, the game is divided to three states (defensive, offensive, and general).Each state has
different positioning, so robots must cooperate to decide which of them is nearest to the ball and where is
the target poison of them.

2.2 Behavior based Layer

This layer takes current and target state of the robots. Destination of this layer is reaching to the target. The
current state of a robot consists of the robot X and Ycoordinates, orientation, and velocity. A desired target
state consists of the final X and Ycoordinates, final orientation, final velocity or power of kicking. This
section contain walk, kick and stand up behavior.

The main time-consuming part of our work was the walk behavior that makes a stable, fast and omni-
directional movement. In the sequel, the main three behaviors i.e. walking, kicking and standing up have
been described.

2.2.1 Walking

As shown in figure 1, the walk behavior contains 4 parts including path finding, Trajectory, Inverse
kinematic and joint controller. In first part path finding algorithm used for obstacle avoidance and find a
path to target point. After calculating next step point, trajectory subsystem find hip and foot motion curve.
According to this curve inverse kinematics equation are used to calculate a posture of the robot and angle
of each joint. At the end a fuzzy controller is used for smooth joint movement. By this approach stabilize
walking should occur but because of environmental disturbance robots may lose their stability. Because of
this we first calculate ZMP, if ZMP does not exist in 'Desired area, robot has to move a ZMP to the
'Desired area'. We do this by using posture controller and changing current angle that is calculated in
inverse kinematic part.

Fig. 1. Walking Behavior

2.2.1.1 Path Finding

To move a robot to another position, we used Path Finding which takes the current positions of the robots
and the target position of each robot. This section would produce each robot’s path using ‘Hopfield Neural
Network’ [7]. Because of operation in a dynamic environment, we must use a method to overcome
collision of robot. First we optimize the path by using this algorithm from the end to start and then after
predicting the path from start to end. The results are very satisfactory and also the generated path is the
most optimized. For avoiding the local minima, we execute the next movement energy prediction. The
amount of such a prediction is variable. Hence, the amount of energy is calculated for 5 next squares for

each movement. If we reach any object, the energy function will increase and optimization avoids selecting
that way.

2.2.1.2 Trajectory

In this section, finding hip and foot trajectories by using genetic algorithm is described. In this approach,
the key parameters which define the trajectories are searched by genetic algorithm to find the best
trajectory that has asymptotical stability.

Walking is a periodic action, thus determining motion for one cycle is enough. We assume T is the
period length of one walking cycle and in every cycle the foot reaches its highest position after ݐ௣ units of
time.

The foot trajectory parameters are shown in figure 2. As shown in this figure, horizontal position of the
foot in the beginning of walking cycle is –S, in the end of cycle is S and when the foot is in its maximum
heights position, ܪ௣, its horizontal position becomes െܵ ൅ ܵ௣. Besides, since the feet fully contact with the
ground, the horizontal velocity at that points must be zero.

We determine 3 points of motion by using the values of ܵ, ܵ௣. Using these points and cubic spline
interpolation, horizontal trajectory of foot is determined.

Similarly by using cubic spline interpolation and determining ܪ௣ vertical trajectory of foot is
determined.

Because the vertical motion of the hip is limited, we can assume that hip height is constant and for
horizontal movement of the hip as shown in figure 2, horizontal position of the hip in the beginning of
walking cycle is െ ଵܵ, in the end of cycle is ܵ െ ଵܵ and when the foot is in its maximum heights position,
the horizontal position of the hip becomes ܵଶ. More ever, horizontal velocity and acceleration of the hip in
the beginning and ending of walking cycle should be the same. Again by using cubic spline interpolation
and determining ଵܵ, ܵଶ and S horizontal trajectory of the hip is determined.

Fig. 2. Trajectory Parameters

Now with genetic algorithm best values for parameters ܵ, ଵܵ, ܵଶ, ܵ௣, ,௣ܪ ܶ, ௣ are determined. Fitness ofݐ
individuals can be determined with regard to stability of the robot, such that the more the zero moment

point is close to midpoint of stance foot in each step, the more fitness will be given. Flowchart of this
genetic algorithm is shown in figure 3.

Fig. 3. Genetic Algorithm Flowchart

2.2.1.3 Inverse Kinematics
In walking pattern generation of the biped robot, forward and inverse kinematics equation are used to
calculate a posture of the robot and angle of each joint. Kinematics analysis is based on Denavit-
Hartenberg's kinematics notation. The output angle of kinematics compensate with ZMP (Zero Moment
Point) compensator. Posture of a biped robot is stable when ZMP exists in 'Desired area' which is assumed
as the most stable area according to ZMP. If ZMP does not exist in 'Desired area, robot has to move a ZMP
to the 'Desired area'[3].

2-2-1-4 Joint Controller

Fuzzy controller is employed to control the joint angles. Three membership functions are constructed for e
and e', where e is the error between measured angle and desired angle and e' is the error between measured
angle variation and desired angle variation. Each of the input variables has following fuzzy sets: NB, NM,
Z, PM, PB. Membership functions consist of overlapped isosceles triangles as shown in Figure 4 and 5.

a. Input Membership Function e

a. Input Member ship Function e'

Fig. 4. Input Membership Function

Fig. 5. Output Membership Function

2.2.2 Kick

Because of keeping balance of the robot, an effective and powerful kick is a challenging task. There are
two factors that influence the balance of a soccer robot in kicking. One is the quick move of the kicking leg
and the other is that the center of gravity of the robot moves to the front.

Kicking action composed from three steps and figure 1 shows these steps. In the first step, the robot
leans to move its center of gravity to the supporting leg and bend its legs. The robot needs to bend as low as
possible to get a wider kicking range. In the second step, the robot lifts its kicking leg so high as the center
of gravity remains in the supporting area. We name this height H. Finally, robot starts kicking in the third
step.

For keeping the balance of the robot ankle joint angle of stance leg should be adjusted. When the kicking
leg swings backward, the stance leg leans forward and when kicking forward, the stance leg leans
backward. These leaning angles have an important effect on keeping the balance of the robot. We name
these angles ߠ௙௢௥௪௔௥ௗ and ߠ௕௔௖௞௪௔௥ௗ. From these two angles. the trajectory of stance leg ankle angle can be
determined by using third order spline interpolation.

Because it is difficult to go exactly behind the ball, every kick should have a kicking range that the ball
can be kicked if it is in the kicking range. By determining kicking range and H, the trajectory of kicking
foot can be determined similarly by the third order spline interpolation.

Thus to have an effective and powerful kicking, we should determine the suitable value for ߠ௙௢௥௪௔௥ௗ,
 ௕௔௖௞௪௔௥ௗ, H, kicking range and the value of bending in the first step. These values can be determined byߠ
genetic algorithm in a similar way that we described for trajectory of walking skill. Fitness given to
individuals is related to the balance of the robot and the magnitude of ball movement. After determining
suitable trajectories for kicking we use similar approach as walking that described in section 2-2-1.

Fig. 6. Shooting Steps

2.2.3 Standing up

Since in soccer games, physical contact between the robots is unavoidable, the walking patterns can be
disturbed and the robots might fall. Thus the agents should be able to recognize their posture on the ground,
and getting up again. From the vision data, each agent can determine its posture on the ground and
regarding to its situation, it can use specific patterns for getting up. We use static patterns for getting up.

3 Localization

Every agent has polar coordinates of other objects in its vision coordinate system. However, it is better if
it has the coordinates of all objects including itself in world’s global coordinate system. By defining Σ஺ as
vision coordinate system of the agent and Σௐ as the world’s global coordinate system, we want to find
 , a՜wܯ a՜w matrix that converts the representation of a point in Σ஺ into its representation inΣௐ. Usingܯ
we can find representation of a point in Σௐ by producing ܯa՜w and its representation inΣ஺. In the
continuation of this section, the calculation of matrix ܯw՜a has been described. Obviously, ܯa՜w ൌ
௪՜aܯ

ିଵ .
The process of converting Σ௪ into Σ஺ is composed of two parts. First part is a transition that transfers

the origin of Σ௪ coordinate system to the origin of Σ஺ coordinate system. We show this transition by T
and the transition of Σௐ coordinate system by Σ௪ሖ . Second part is a rotation that turns Σ௪ሖ to Σ஺. We show
this rotation with R.

For finding T we need to find the coordinate of the origin of Σ஺ coordinate system in Σௐ coordinate
system. We show this origin of O஺. to find O஺ we use 3 flags that we name them by fଵ,fଶ and fଷ. Flags are
the objects whose coordinates in both systems are known by the agent. We assume that coordinates of these
flags in Σ஺ coordinate system are Fଵ஺, Fଶ஺ and Fଷ஺ and their coordinates in Σௐ coordinate system are
Fଵௐ, Fଶௐ and Fଷௐ. Then we have the following equation.

ቐ
ԡFଵ஺ԡ ൌ ԡFଵௐ െ O஺ԡ
ԡFଶ஺ԡ ൌ ԡFଶௐ െ O஺ԡ
ԡFଷ஺ԡ ൌ ԡFଷௐ െ O஺ԡ

In the above equation, we have three equation and three unknown variables as O஺௫, O஺௬ and O஺௭.

Hence, we can easily calculate O஺.

If the unit vectors of Σ஺ coordinate system in Σ௪ሖ coordinate system are denoted by X஺, Y஺ and Z஺, we

will show that ܴ ൌ ቎
஺ܺ
்

஺ܻ
்

஺ܼ
்

቏ .

 Since the rows of a rotation matrix are perpendicular to each other and magnitude of each row is equal
to one, production of two different rows is zero and production of a row with itself is one. Thus, if Rଵ

represents first row of R, ܴ ൈ ܴଵ
் is equal to൥

1
0
0

൩. Also it is obvious that ܴ ൈ X஺ is equal to൥
1
0
0

൩. Then Rଵ

is equal to X஺. Similarly it can be shown that Rଶ is equal to Y஺ and Rଷ is equal to Z஺.
Thus for finding R we first find X஺, Y஺ and Z஺ using fଵ, fଶ and fଷ. We show normalized vector of these

flags in Σ஺ coordinate system with fଵ஺, fଶ஺ and fଷ஺ and their normalized vector in Σ௪ሖ coordinate system
with fଵௐ, fଶௐ and fଷௐ. Since the length of X஺ and fଵௐ are equal to one, dot product of X஺ and fଵௐ is
simply the cosine of the angle between these two vectors. But as X஺ is a vector on the x axis of Σ஺
coordinate system, the cosine of the angle between these two vectors is x component of fଵ஺, means ଵ݂஺௫.
As a result, we have the following equations.

ቐ
fଵௐ. X஺ ൌ ଵ݂஺௫
fଶௐ. X஺ ൌ ଶ݂஺௫
fଷௐ. X஺ ൌ ଷ݂஺௫

And from the above equations we have,

ሾ ଵ݂ௐ ଶ݂ௐ ଷ݂ௐሿ ൈ ஺ܺ ൌ ቎
ଵ݂஺௫

ଶ݂஺௫

ଷ݂஺௫

቏

Finally ஺ܺ can be calculated from the equation below,

஺ܺ ൌ ሾ ଵ݂ௐ ଶ݂ௐ ଷ݂ௐሿିଵ ቎
ଵ݂஺௫

ଶ݂஺௫

ଷ݂஺௫

቏

Similarly,

஺ܻ ൌ ሾ ଵ݂ௐ ଶ݂ௐ ଷ݂ௐሿିଵ ൦
ଵ݂஺௬

ଶ݂஺௬

ଷ݂஺௬

൪

஺ܼ ൌ ሾ ଵ݂ௐ ଶ݂ௐ ଷ݂ௐሿିଵ ቎
ଵ݂஺௭

ଶ݂஺௭

ଷ݂஺௭

቏

All in all, the calculation of R and T has been described and using them, ܯw՜a and ܯa՜w can be
calculated easily.

4 Team Structure

This is UML diagram of our team. It shows the main parts and their functions.

Fig. 7. UML diagram

4.1 Decision class

It is the highest level layer of our team that will make decisions to go to a place or shoot the ball or stand
up, then selects which trajectory must be executed. The modules of positioning and path finding are
separated from decision because of their independencies to other parts. Trajectory builder is a module that
builds these trajectories and will be discussed later.

4.2 Control class

When the decision algorithm selects a trajectory to run, it will be passed to the control section and it will
proceed to execute it. The subsystems of inverse kinematics, joint control and posture controller are
separated from this section and will be described later.

4.3 World Model and Body classes

As shown in the diagram, analyzing server messages, localization and computing of global position of
external objects are done in WM. Furthermore, computation of robot limbs global positions and their
velocities and computing ZMP of robot will be done in Body class.

4.4 Robot Console class

It is responsible for transferring data between agent and our assisting tools which are described in
development tools section.

5 Development Tools

A time-saving and high performance tool, named trainer and monitor, is used to test server environment,
train the agents and calculate the statistics of matches.

5.1 Trainer

Last year, we developed this tool in team 'Aria 2007' to make trajectories manually. Its main drawback was
being very time consuming. This year we improved it to match our new system and to make trajectories
automatically. It will provide an environment to test trajectories created in the trajectory builder and
rewards them.

Fig. 8. Trainer

5.2 Monitor

We also developed this tool last year in 'Aria 2007' team to simplify debugging our agent. This year it has
been improved to show accuracy of localization, decision delay and exceptions.

6. Conclusion

In this paper, some aspects of our current team were described. Our implementation of the decision maker
and behavior based layer are addressed. Three main behavior of our robot that includes waking, kicking
and standing up have been described in Behavior based layer. A learning algorithm is used for optimized

walking parameters and reaching fast walking steps. More ever powerful and stable kicking process is
considered in this paper. In addition, the development tools that make easier our development are
described.

References

1. Zhe Tang, Changjiu Zhou and Zenqi Sun, “Balance of penalty kicking for a biped robot “IEEE Conference on

Robotics, Automation and Mechatronics, 2004

2. V.H. DAU, C.M. CHEW and A.N. POO,” Optimal Trajectory Generation for Bipedal Robots“

3. K.C. Choil,H.J. Lee and M.C. Lee2, “Fuzzy Posture Control for Biped Walking Robot Based on Force Sensor for
ZMP” SICE-ICASE International Joint Conference 2006, Busan, Korea

4. M.M. Korjani, Design, implementations and Control of a Mobile Robot in Fuzzy Environment Using Neural

Networks, BSc final thesis, Electrical Engineering Department, Amirkabir university of technology, 2006.

5. T. Hemker, H. Sakamoto, M. Stelzer, and O. von Stryk. Hardware-in-the-loop optimization of the walking speed
of a humanoid robot. In CLAWAR 2006: 9th International Conference on Climbing and Walking Robots, pages
614–623, Brussels, Belgium, September 11-14 2006.

6. Paul, Richard P., C. N. Stevenson, “Kinematics of Robot Wrists, ”The International Journal of Robotics Research,

Vol.2, No.1, Spring 1983

7. H.Y. Sun and G.Y. Tang, “Optimal Disturbance Rejection with Zero Steady-state Error for Linear Discrete-time

Systems”, Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21 - 23, 2006,
Dalian, China

