
OxBlue2008(3D) Team Description

Jie Ma and Stephen Cameron

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

{jie.ma@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk

Abstract. OxBlue2008(3D) is a robot football team for RoboCup 3D
simulation. In this paper, the decision structure of our team will be
presented, and a walking pattern problem that encountered by most 3D
teams will be reviewed. We propose a novel method called PSP (Policy
Search Planning), and discuss how PSP can be used to solve the walking
pattern problem. We regard joints and parts from a single robot as multi-
agents; a walking pattern can be defined as a cooperative plan. Policy
Search is used to find an optimal policy for selecting different walking
patterns from a plan pool; it extends an existing gradient-search method
(GPOMDP) to a MAS domain.

1 Introduction

OxBlue2008(3D) is a robot football team for RoboCup 3D simulation and it is
currently under development at Oxford University. The main purpose of our de-
velopment of OxBlue2008 is to verify and promote our research on Multi-agent
Systems (MAS). In particular, as cooperative skills essentially differentiate MASs
from single-agent intelligence, we are interested in applying Machine Learning
methods to yield cooperative behaviours in MAS scenarios. In RoboCup 3D sim-
ulation, multi-agents are two-fold: multiple robots from two teams and multiple
joints and parts from a single robots. Since currently a team only consists of two
robots, cooperation amongst agents is obscure; thus we explore the problem of
planning walking patterns using a novel MAS method that we proposed called
PSP (Policy Search Planning).

In §2, a layered decision architecture that is used in OxBlue2008(3D) is pre-
sented. A walking pattern problem that encountered by most teams is be re-
viewed in §3. A brief introduction of a novel method PSP that we proposed is
given in §4 (and we submitted a separated paper that includes the complete de-
tails to the RoboCup symposium 2008); and its application in planning walking
patterns is discussed in §5. It is followed by the conclusion and future work in
§6.

2 Decision Architecture

In order to reduce the learning space of cooperative skills, most of today’s
MASs tend to adopt vertical layered architectures [1, 2]. This architecture is

http://www.comlab.ox.ac.uk


also adopted in OxBlue2008 (both 2D and 3D). In RoboCup soccer, pure re-
action is required on some occasions, such as getting up when a robot falls,
where the agent doesn’t need to make complicated decisions but tries to stand
up again. In other words, before world models are fully generated, actions will
be directly sent. In more sophisticated decisions, however, such as stopping the
ball from losing it, then although world models have been created, emergency
actions will be directly sent to the executor without comparing different skills
in the arbitrator. This is in-between decisions. In most cases, decisions are pure
deliberation — local issues such as walking to the ball can be solved in the in-
dividual skill module, while global problems (for the future simulator) including
formation and team strategies can be dealt with by advanced methods such as
planning. Our decision structure is given in Figure 1.

World Model

Sensors

Individual Skills 

(Getting up / Walking/ Turning / Kicking)

Executor

Arbitrator

Reaction

Partial Cooperation

Global Cooperation

Deliberation

Environment

Communication

(for future simulators)

Fig. 1. Decision Architecture of OxBlue2008(3D)

3 Planning Walking Patterns

The robots in 3D simulation are biped; and walking has long been regarded as one
of the most challenging problem for a biped robot. In a robot football domain,
walking skill is especially indispensable, because it is a significant infrastructure
for high-level skills such as running, positioning and dribbling.



Previous studies mainly focused on three methods: recording human kine-
matic data [3], interaction of gravity and inertia and zero moment point (ZMP).
Preceding research suggested that if the contact area is planar, ZMP yields more
stable walking behaviours compared with the other two methods. Basically, the
ZMP algorithm is to find a set of movements, whose total inertia force equals to
0 at the contact of the foot with the ground.

Ankle trajectory

Hip trajectory

Fig. 2. A Walking Pattern in RoboCup soccer 3D simulation

Since the ground is planar in 3D simulation, we employ ZMP method to
generate walking patterns. We use a parameterised walking pattern generator
that proposed by Huang [4] to produce a walking pattern. In this method, a
walking pattern is determined by the trajectories of the hip and the ankle. An
example of these two trajectories in RoboCup 3D simulation is given in Figure
2.

A walking pattern is essentially controlled by a gait phase tuple 〈Tc, Td〉,
which controls the time of a whole step and the time of the moving leg in the
air; a height tuple 〈Hh min,Hh max, Hao〉, which defines the height limitation of
the hip and the ankles; a gait length parameter Ds and two tweak parameter
xsd and xed to adjust the walking pattern. In order to simplify the computation,
we assume the feet are always parallel to the field, and the position of the hip
and the moving ankle in the step k is given as Equations 1–4.

xa(t) =





kDs, t = kTc

kDs, t = kTc + Td

kDs + Lao, t = kTc + Tm

(k + 2)Ds, t = (k + 1)Tc

(k + 2)Ds, t = (k + 1)Tc + Td

(1)



za(t) =





hgs(k) + lan, t = kTc

hgs(k), t = kTc + Td

Hao, t = kTc + Tm

hge(k), t = (k + 1)Tc

hge(k) + lan, t = (k + 1)Tc + Td

(2)

xh(t) =





kDs + xsd, t = kTc

(k + 1)Ds − xsd, t = kTc + Td

(k + 1)Ds + xed, t = (k + 1)Tc

(3)

zh(t) =





Hh min, t = kTc + 0.5Td

Hh max, t = kTc + 0.5(Tc − Td)
Hh min, t = (k + 1)Tc + 0.5Td

(4)

The positions in the equations are discrete, and the complete trajectory func-
tions can be calculated using third-order spline interpolation, which can arguably
produce smooth walking trajectories.

In practical, when we regard joints and parts from a single robot as multi-
agents, a walking pattern i can be defined as a parameterised MAS plan Pi =
〈Tc, Td,Hh min,Hh max,Hao, Ds, xsd, xed〉, and the parameters for a plan can be
found by experiments or machine learning methods. However, under the same
speed, the optimal walking pattern is still obscure; so we can define multiple
plans in a planpool and use Policy Search Planning (PSP) to balance speed,
stability and energy consumption (for future simulator). The details of PSP
have been demonstrated in a separated paper for RoboCup symposium 2008.
In this paper, a brief introduction of PSP is given, and how it can be used in
planning walking pattern is illustrated.

4 Policy Search Planning (PSP)

In complex MASs, particularly in a system with hybrid individual architectures,
planning plays a different role compared with that in traditional domains. In
a simplified single-agent system, planning is used to directly find a goal. In
dynamic MASs, however, the goal is usually difficult to achieve, or sometimes it
is difficult to describe the goal. In addition, the traditional action effects will lose
their original meaning: environmental state can also be changed by other agents
at the same time, or sometimes it continually varies even without any actions. For
example, consider a walking scenario from RoboCup 3D. A traditional planner
might construct a plan in which a robot is walking to a point A at the speed
of 1.5m/s and it takes distance

Ds
walking cycles (steps) to accomplish this task.

However, if we use a smaller gait length Ds, the same goal can be achieved at
the same time. Even from a human’s perspective it is difficult to say which plan
is better.

We propose a novel method called Policy Search Planning (PSP) for POMDPs,
which is essentially a centralised planner for distributed actions. PSP can try to
find the most appropriate policy for selecting a plan. Specifically, it can represent



a number of walking patterns in the form of plans, and policy search is used to
find the optimal policy in choosing these plans. As a plan is not designed to find
the goal directly but to define cooperative knowledge, the style of it is not very
critical. One possible presentation, a PDDL-like planner, is shown in Figure 3.

Compared with original PDDL, :goal will not be included as PSP aims not
to achieve it directly, and :effect is not needed unless it is used for parameters
in policy search. The concept of stage is introduced, which makes complex co-
operation possible, whereby if and only if the success condition of the current
stage is met a planner moves to the next stage; and role mapping formulae are
introduced to find the most appropriate agents to implement actions

(define (PLAN_NAME)

(:plan_precondition CONDITION_FORMULA)

((:agentnumber INTEGER(N))

(ROLE_MAPING_FORMULA(1))

(ROLE_MAPING_FORMULA(2))

...

(ROLE_MAPING_FORMULA(N)))

((:stagenumber INTEGER(M))

((:stage_1_precondition CONDITION_FORMULA)

(:stage_1_success CONDITION_FORMULA)

(:stage_1_failure CONDITION_FORMULA)

(:stage_1_else CONDITION_FORMULA)

(:action1 ACTION_FORMULA)

(:action2 ACTION_FORMULA)...)

((:stage_2_precondition CONDITION_FORMULA)

...) ...

((:stage_M_precondition CONDITION_FORMULA)

...))

[(:effect EFFECT_FORMULA)])

Fig. 3. A PDDL-like Plan Structure in PSP

Fig. 4. Learning Process in PSP algorithm



In the PSP algorithm, a plan is actually a cooperative strategy. We can
define plenty of offline plans to establish a plan pool, which is essentially an
expert knowledge database. If the external state satisfies the precondition of a
plan, the plan will be called an active plan. At time t, if there is only one active
plan, it will be marked as the running plan and actions will be executed stage
by stage. However, along with the growth of the plan pool, multiple active plans
may appear at the same time.

Previous solutions [5, 6] chose a plan randomly, which is clearly a decision
without intelligence. Q-learning is apparently a wiser approach, but unfortu-
nately Q-learning is difficult to adopt in generalised decision architectures be-
cause all the plans cannot guarantee activation.

In this paper we employ another reinforcement learning method, policy search,
to overcome this difficulty. The learning framework is illustrated in Figure 4. Due
to the space, we are unable to extend the details of PSP method.

5 Application in Planning Walking Patterns

We are currently still working on the training environment in Simspark. Re-
cently, Apollo3D team proposed a method to integrate an agent directly into
the server, thus we intend to employ this method to undertake learning in the
next stage of our research.

Planning walking patterns in RoboCup 3D is a suitable application for PSP
algorithm because of the following three reasons. First, in a walking problem,
multi-agents are using a pure planning decision structure and the global rewards
only come from policy selector. Second, intelligent cooperation amongst joints
and parts is urged. Third, how to balance speed, stability and energy consump-
tion in a walking pattern problem is one of the most challenging issues in biped
robot domain.

In a plan Pi = 〈Tc, Td,Hh min,Hh max,Hao, Ds, xsd, xed〉, tweak parameters
〈xsd, xed〉 are used to polish a plan, and the optimal tuple can be found when
given 〈Tc, Td, Hh min,Hh max, Hao, Ds〉. Essentially, PSP is not used to define pa-
rameterised plans, but to find the policy to select the optimal walking pattern
amongst a number of walking patterns based on 〈Tc, Td, Hh min,Hh max,Hao, Ds〉.
For example, we can calculate how much a walking plan close to ZMP and how
much energy a step requires, and PSP can find the optimal policy to balance the
stability and energy consumption.

6 Conclusion and Future Work

In §2, a layered decision architecture that is used in OxBlue2008(3D) is pre-
sented. A walking pattern problem that encountered by most teams is reviewed
and a parameterised gait generater is used in our team.

We proposed a novel method called PSP in a generalised POMDP scenario, in
which a large selection of cooperative skills can be presented in a plan pool; and



policy search is used to find the optimal policy to select among these plans. We
briefly demonstrated why and how PSP can be used in RoboCup 3D Simulation.

PSP is our first attempt to learn the optimal cooperation pattern amongst
multiple agents. Our future directions for RoboCup 3D are three-fold. First, we
are going to undertake learning in Simspark, and explore the most efficient and
stable walking pattern at different speeds. Second, we are planning to design an
self-adaptive walking pattern selector in a dynamic environment as ODE (Open
Dynamics Engine) generates action noises. Third, we will explore the running
and dribbling skills in humanoid robot football.

References

[1] Perraju, T.S.: Multi agent architectures for high assurance systems. In: American
Control Conference. Volume 5., San Diego, CA, USA (1999) 3154–3157

[2] Stone, P., Veloso, M.: Layered learning and flexible teamwork in robocup simulation
agents. In: RoboCup-99: Robot Soccer World Cup III. (2000) 65–72

[3] Ha, S., Han, Y., Hahn, H.: Adaptive gait pattern generation of biped robot based
on human’s gait pattern analysis. International Journal of Mechanical Systems
Science and Engineering 1 (2008)

[4] Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., Tanie, K.:
Planning walking patterns for a biped robot (2001)

[5] Obst, O.: Using a planner for coordination of multiagent team behavior. Program-
ming Multi-Agent Systems 3862/2006 (2006) 90–100

[6] Obst, O., Boedecker, J.: Flexible coordination of multiagent team behavior using
htn planning. In: RoboCup 2005: Robot Soccer World Cup IX. (2006) 521–528


	OxBlue2008(3D) Team Description
	Jie Ma and Stephen Cameron
	1 Introduction
	2 Decision Architecture
	3 Planning Walking Patterns
	4 Policy Search Planning (PSP)
	5 Application in Planning Walking Patterns
	6 Conclusion and Future Work


