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Abstract. This paper presents an overview of our 3D Soccer Simulation Team. First we 
describe the main strategies and methods used in Nexus 2005 3D Soccer Simulation team. 
Then we address important features and improvements that are going to be in Nexus 2006. 
The main development we made was using a two-phase selection mechanism to determine 
the best action among all possible ones carried out by the ball controller agent for a given 
situation. 

1   Introduction 

Nexus 3D Soccer Simulation team developed by a group of M.S and B.S students of Ferdowsi 
University of Mashhad. The Nexus team successfully participated in Robocup 2005. Previously 
our 2D team participated in Robocup 2003 in Padova. Nexus 2006 Soccer Simulation 3D team is 
mainly based on the architecture of Nexus 2005 3D team [1]. Our aim has been to construct 
stable and flexible agent architecture for our further development and research. This architecture 
is organized such that in each release of server we can apply the changes to this architecture, 
easily [2]. 

2   Agent skills 

As the primitive commands are rather difficult for the decision-making component to use 
directly, we develop some high level skills which are easy and convenient to use. These skills 
include “dash to some position”, “kick the ball to some position with a specified 3D velocity”, 
“shoot the goal to a specified point”, “dribble to some target position with a specified velocity” 
and so forth. And the decision-making component should decide to take some action to gain the 
highest profit according to the world model. 

The Skills are an abstraction to low level server commands and should provide the decision 
layer with high-level commands, like ’go to a certain position’ or ’kick the ball with a certain 
speed’. The intercept skill (either of the ball or a position) will be implemented in a kind of 
greedy fashion, i.e. drive in the direction of the target and slow down soon enough. 



2   Action evaluation 

To determine the best action among all possible ones carried out by the ball controller agent for a 
given situation, we first recognize the best of each action, i.e., the best shoot, the best dribble, 
and the best pass, independently. It is clear that, when the best possible shoot is sought the pa-
rameters that affect the shooting action are considered, only.  For dribble and pass actions the 
same kind of process is followed. In the next phase, we select the best of bests, i.e., the system 
chooses the best action among three best actions shoot, dribble, and pass. In this phase, common 
measures are used in order to evaluate the actions. To determine the priority in the second step, 
the calculated priorities in the first step is not considered [2]. 

3   Team strategy 

We use very simple team strategy, that is when the agent is the fastest player to get the 
football, and then it tries to intercept the ball; when the agent is not the fastest, it drives to its 
strategic position; when the agent can kick the ball, it kicks the ball directly to the opponent’s 
goal, passes the ball to one of its teammates or performs a long dribble. 

5   Future works 

Our future work would mainly base on implementation of shoot module using Reinforcement 
Learning approach. After tight considerations of RL methods we decide to implement Q-
Learning for this matter. We have our Q-Table initially filled by manually collected data set. 
Each row of Q-Table represents a state. We consider 3 parameters for defining a state which are: 
ball distance to goal line, angle between ball and goal sides, and goalie distance to goal line. 
Uniform clustering is used to quantify them as ball distance to goal line are 21 clusters, angel 
between and goal sides (Left bar, Right bar) are 45 clusters and goalie distance to goal line are 5 
clusters. Thus, in this problem, the number of states is 21*45*5 which sums up to 4725.  
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Soccer simulation as an effort for motivating researchers in the field of artificial intelligence and robotic research has 
always been a progressive approach. Robotic soccer is a particularly good domain for studying multi-agent systems and 
behaviors. In this paper, we describe researches done by Nexus team from the prior 2D soccer simulation environment to 
the curent humanoid simulation version. The main development features were done on decision making, action selection, 
and coach strategy making modules using fuzzy logic mechanism and game theory approach. Some very basic humanoid 
actions are also explained. 

 
1. Introduction. Robotic soccer is a particularly good domain for studying multi-agent systems. 
It has been gaining popularity in recent years with international competitions like RoboCup which 
is planned for the near future [1]. Soccer simulation environment is a client-server platform which 
provides an excellent testbed for development of multi-agent systems. Using this testbed frees 
researchers fomr getting involved in the complexities of physical robot developmets. 
 
Nexus, established in 2002, is the RoboCup soccer simulation team of Ferdowsi University of 
Mashhad, Iran. As an important first step, the team was qualified to participate in RoboCup con-
test in 2003 Padova, Italy, in Soccer-2D league. Afterwards, Nexus could go as high as the third 
round in RoboCup 2005 Osaka, Japan, and ranked between 9th and 12 th place among 33 teams. 
The team has also participated and won some domestic leagues in Iran during these times. Cur-
rently, Nexus has become eligible and was qualified to participate in the RoboCup 2007 Atlanta, 
US, in the humanoid soccer robot simulation league. In this paper, we propose a comprehensive 



review of our research projects done in the RoboCup simulation filed from the early 
stablishement of the Nexus team. 

 
The current development of 3D Soccer Simulation League leads towards humanoid robots known 
as soccerbot agent, which already can be controlled by a lower level interface. However, control-
lers for these robots have to be developed in order to provide an easy-to-use interface. The rules 
has been maturated in many points and gained focus on the issues that are essential from a techni-
cal point of view. Thus, the center of mass of all robots has to be on a certain height in relation to 
the size of the feet. Fundamental for playing soccer are the abilities to walk and to kick. As body 
contact between the physical agents is unavoidable, the capability of getting up after a fall is also 
essential. For keeping a goal, the robot must be able to perform special motions. 

 
4.1. Walking skill. Transferring the weight from one leg to the other, shortening the leg not 
needed for support, and leg motion along the walking direction are the key ingredients of this gait. 
Walking forward, to the side, and rotating on the spot are generated in a similar way. As the first 
step toward a skillful humanoid agent, walking is performed with a traditional control method that 

follows a set of generated ZMPs1 along the path. This working dynamic model for biped robot 
walking is shown in Fig.6. 

 

 
Fig.6 ZMP trajectory 

 
The trajectory tracking methods (specially generated by a series of ZMPs) to control the agent 

balance while moving has been investigated in [15]. Generated trajectory is followed by a precise 
controller. The controller, knowing the exact path of the agent’s joints, determines the velocity of 
the joint motors to direct different parts of the robot along the computed path. The walking skill 
of our agent is depicted in Fig.7. 

 

                                                           
1 Zero Moment Point 



    
 

Fig.7 Soccerbot walking skill 
 

4.2   Kicking skill. After inhibiting the walking behavior and stopping, the robot moves its 
weight to the non-kicking leg and then shortens the kicking leg, swings it back and accelerates 
forward. The kicking leg reaches its maximal speed when it comes to the front of the robot. Same 
principles for keeping robot’s balance while walking or running are applied in performing 
actions like kick or dribble. The effectiveness of using dynamic methods like following the path 
generated by ZMPs with the help of new control methods like fuzzy PID control is already 
proved in such fields [16, 17].  

 
4.3. Goalie dive skill. The goalie is capable of diving into both directions. First, it moves its 
center of mass and turns its upper body towards the left while shortening the legs. As soon as it 
tips over its left foot, it starts straightening its body again. While doing so it is sliding on its hands 
and elbows. These steps are depicted in Fig.8. 

 

       
 

Fig.8 Soccerbot diving skill 
 

5. Future work. Further improving the controller will be the next stage. Number of learning and 
optimizing methods such as artificial neural networks, genetic algorithms and other evolutionary 
approaches will be considered to give the controller an adaptive smooth behavior. For example 
genetic algorithm could be used to search the trajectory path, computed by the traditional dy-
namic model, with a small margin to achieve a better walking performance. Fuzzy logic, as a 
powerful tool in dealing with imprecise environments, can also improve the performance of the 
designed controller. 
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Abstract 

 
This article proposes a new hybrid methodology, together with an associated series of experiments employ-
ing this methodology, for an evolutionary gait generator that uses trigonometric truncated Fourier series 
formulations with coefficients optimized by a Genetic Algorithm. The Fourier series is used to model joint 
angle trajectories of a simulated humanoid robot with 25 degrees of freedom. The humanoid robot in this 
study learns to imitate the human walking behavior on flat terrains in a dynamically simulated environment. 
The simulation result shows the robustness of the developed walking behaviors even in extremely high and 
low speeds providing appropriate frequency. Number of range limitations were applied to the genetic algo-
rithm used in this research to improve the learning period to less than 48 hours. The research seeks to im-
prove upon the previous works on evolutionary gait generation, in robots with lower degrees of freedom. In 
addition, the proposed solution adapts a hybrid approach, thereby avoiding the long learning curves and 
unstable and slow gaits associated with evolutionary approaches.  
 
Introduction 
 



Building robots that imitate human behavior to perform their actions like walking and running is amongst 
the most popular, and at the same time most complex tasks, in autonomous system design. This complexity 
is mainly due to the difficulty to cope with the many Degrees of Freedom (DOF) of a humanoid robot. This 
high number of degrees of freedom in a biped mobile robot creates new problem spaces in control and 
navigation where conventional methods often fall short [1]. To reduce the complexity of the analysis, some 
researchers adopted a simplified dynamic model such as the inverted pendulum with certain assumptions on 
the robot’s motion and structure [2]. While these simplifications come handy in designing initial trajecto-
ries, there still exist significant differences between the dynamics of a simple bipedal robot and a genuine 
humanoid robot with a high DOF. 
 
A popular approach used for joint trajectory planning for bipedal locomotion is based on the Zero Moment 
Point (ZMP) stability indicator. In many ZMP-based trajectory planning approaches, motion planning is 
presupposed and performed in the Cartesian space [4, 5].  
 
Hence, evolving control systems for robot locomotion is becoming a standard approach for the generation of 
improved or newer control systems for robots [6]. Various learning approaches for bipedal locomotion have 
been proposed by several researchers. Lin Yang et. al presented the Genetic Algorithm Optimized Fourier 
Series Formulation (GAOFSF) method for stable gait generation in bipedal locomotion in [7]. They use 
Truncated Fourier Series (TFS) formulations together with a ZMP stability indicator to generate the feasible 
gaits for a simple seven-link planar robot. A genetic algorithm is then utilized to search for optimal gaits 
according to the objective functions considering the specified constraints.  
 
Some researches have used genetic algorithm to directly generate joint trajectories for each step [8, 9]. 
These trajectories are then applied to joints repeatedly while walking. Although this method is successfully 
utilized for biped robots, the generated gaits can not be changed to achieve desirable real-time motion ad-
justment.  
 
In this paper, automatic evolution of walking behavior in a simulated humanoid with online adjustable 
speed is discussed. The robot in this study is a simulated model of Fujitsu’s HOAP-2 that is a genuine hu-
manoid with two arms and two legs and 25 DOF (Figure. 1). The simulation is performed by Spark, a ge-
neric three-dimensional physics simulator based on Open Dynamics Engine (ODE). Spark is capable of 
carrying out scientific distributed multi-agent calculations as well as various physical simulations ranging 
from articulated bodies to complex robot environments [10]. Robot models simulated in Spark can be easily 
controlled using programming languages like c++ and java. A simple PD controller was implemented to 
control the joint motors, but due to the adaptive nature of evolutionary methods, any other type of controller 
can be used. 
 
Since the movements of the robot are known to be periodic while walking on flat plains, the motion of every 
joint can be expressed in terms of a trigonometric truncated Fourier series. Coefficients of the Fourier series 
are determined by using a genetic algorithm. Each individual in the genetic algorithm contains a set of 
coefficients for every joint’s Fourier series, and thus defines a gait. These gaits are then tested in the simula-
tion environment until the robot falls down over the ground or a sufficient amount of time passes by. The 
fitness is calculated based on the forward movement of the robot and the total time of the test. Once all 
individuals of the current generation are tested, the next generation is generated by applying GA operators 
over the best fit individuals. Using this method, a relatively fast and stable walking gait is evolved within a 
three-day simulation time on a Pentium IV 2.8GHz machine with 1GB of physical memory. 
 
2. Truncated Fourier series 
 



Evolutionary approaches include trying to 
optimize the parameters of a given type of 
motion model [11]. Common to these 
methods is the fact that a certain amount of 
knowledge of how locomotion is 
performed is implicitly present in the 
model. This narrows down the search space 
thus reducing the time needed for the 
optimization process. For a deeper look into 
biped motion properties we recorded and 
processed HOAP-2 (Figure. 2) walking gait which is included in the Webots simulation software 
[12]. 

Figure. 2(a) and Figure. 2(b) give the knee and hip trajectories for the HOAP-2. These trajecto-
ries are identical in shape for both legs, but are shifted in time relative to each other by half of the 
walking period. The gait period is given by 2π/ω where ω is defined as the gait frequency in radi-
ans per second (rad/s). Because of the periodic nature of the motion we can formulate joint an-
gles using Fourier series. The Fourier Series of a periodic function of time f(t) can be written as: 
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Where an and bn are constant coefficients and t is the period. The period can be calculated by 
desired fundamental frequency ω ω by t= 2π/ . 

Since the servo motors used in the robot act as low pass filters, we expected to be able to omit 
higher order frequencies without decreasing performance because these frequencies cannot con-
tribute to the motion that is actually being executed by the robot. Thus we use Truncated Fourier 
Series (TFS) which have only the 3 first terms of trigonometric form of Fourier series.  
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Where an, bn and t are same as Equation 1, and a is an amplitude scaling parameter used 

for changing the step length. The parameter m determines the number of terms in the Fourier 
series.  Using this formula significantly reduces the subsequent computational load in the 
search for feasible and optimal solutions using GA which is discussed in next section. 

One of the advantages of this approach is that trajectory generation is done directly in the 
joint space. As such, inverse kinematics computation is not required thus avoiding the singu-

 



larity problem. The walking rhythm, speed, and walking pattern can also be adjusted online 
through tuning either a single or two parameters. 

 

3. The genetic algorithm 
As discussed in the previous section of this study, each joint trajectory can be modeled by 

a truncated Fourier series. A 
genetic algorithm was used to 
search for the optimal values 
of the coefficients so as to achieve 
stable walking behavior with 
desirable char- acteristics for the 
robot model. The first 3 terms of 
the general trigonometric 
Fourier series were used in the 
formulations. This is due to the fact 
that very high frequencies are 
normally filtered by the joint 
motors. The frequency of the 
Fourier series is considered as a 
constant value and can be 
changed after the offline learning 
is finished. This way every Fourier 
series could be represented by 7 
real numbers and as for HOAP-2 model, 25 series are required to define a gait (One for each 
joint). This makes the size of the individuals relatively large and as a result the learning time 
gets very long. Therefore, some improvements should be taken into consideration to make the 
learning process more effective.  

Joints of the left part of the robot’s body get the same periodic values as the right ones 
while walking straight, with a delay equal to a period time and there’s no need to consider a 
separate set of Fourier series for the right part in the chromosome structure. This makes the 
chromosome almost half in size. Besides, the joints in charge of controlling the foot can get 

 



their values from the knee and hip joints as they could always be kept parallel to the ground 
line. (Figure. 3) Such automatic control of the foot is extremely beneficial in terms of keeping 
robot’s balance, especially in the early stages of the learning phase. Head joints can be also 
ignored in the gait for the sake of simplicity.  

With omitting excessive joints, the final chromosome will contain 6 real numbers for every 
one of the 12 primary joints. Considering this relatively large chromosome size, there are 300 
individuals per generation, and 900 generations. 

The basic GA algorithm is as follows: 

- A random number generator is used to give random real values to Fourier series coeffi-
cients in chromosomes. 

- The robot resets and locates in the initial position in the simulation environment.  

- Chromosomes are tested one by one. In every simulation step, the motor value for each 
joint is calculated using a PD controller, based on the corresponding Fourier series that is de-
fined by the current chromosome. 

- Each test continues until the robot falls over or 60 seconds has passed by. After the test is 
finished the fitness is calculated on the basis of the time passed multiplied by the distance 
from the start point and the next test starts. 

- Once all chromosomes have been tested, the roulette-wheel selection decides which indi-
viduals are allowed to reproduce using mutation and crossover with specified probability. 

A custom crossover was implemented that consists of a simple two-point crossover to-
gether with a creep operator. The creep operator randomly increases or decreases some real 
values of the chromosome by a very small value between 0 and 5. This crossover was applied 
with the probability of 0.6 together with a mutation with probability of 0.05. Valid range for 
the coefficients was also limited to -50 to 50. These values were arrived at after some ex-
perimentation. 

 

4. Initial results 
 

The learning process takes about 7 days to complete. However some decent walking be-
haviors begin to emerge within the second day of the evolution. These walking gaits are 
somewhat unstable and do not follow a forward straight line. After the 4th day of the process, 
stable gaits evolve gradually. Figure. 4 shows the average and maximum fitness values for 
the robot over 460 generations. These figures are averaged over 3 runs. Note that although 
elitism was employed, because of the accurate physics simulation with noise, etc., this allows 
for the maximum fitness to fall as well as rise from generation to generation. 

Studying the initial simulation results with different frequencies reveals that almost all of 
the generated gaits during the learning phase convergence to a human-like walking behavior 
with similar movement patterns. These similarities include human-like movements of the 
hand and sinusoidal movements of the waist. 
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5. The improved algorithm 
In the initial experiments it was found that some joint trajectories are similar in all of the gener-
ated gaits. These common trajectories share the same characteristics and differ in terms of their 
speed and frequency. For example, the elbow joint bends a little at the start of the walking and 
stays almost the same during the rest of the movement. Studying these similarities helps to fur-
ther improve the evolutionary learning process by removing the unnecessary parameters. Ex-
periments show that stable straight walking gaits can be generated by using only two joints of the 
leg: the hip joint 3 and the knee joint. This simplification affects the learning process dramati-
cally and decreases the learning time to less than 48 hours (Figure. 5).  

Based on the initial experiments, the fitness function was also changed in order to achieve 
better results. In this stage the time factor was ignored for the gaits that keep the robot walk-
ing for more than half of the test time. This helps faster gaits to get more fitness value over 
the stable but slow ones. Furthermore, the average amount of deviation was taken into ac-
count so that straight walks have more chance to be selected for regeneration. The simplified 
model of fitness function is as follows: 

 

if (CurrentTestTime < TotalTestTime / 2) 

    Fitness := Time * Distance 

else 

   Fitness := Distance - AverageDeviation 

fi 

 

6. Online parameter adjustment 
 

Walking behavior can be adjusted through changing one or two parameters. By changing 
the Fourier series’ frequency and joint movement gain, desired walking speed can be 
achieved dynamically. In the final experiments we were able to stop the robot after some pe-
riods of walking by gradually increasing frequency and decreasing controller’s gain. 



The movement direction can also be determined by the leg joint 1. This joint is responsible 
for rotating thigh around Z axis. The value of this joint was kept unchanged during the learn-
ing process, but it can be slightly modified while walking to make the robot change its direc-
tion a few degrees. Figure. 6 shows the simulated robot in Spark simulation environment 
while walking with maximum speed. 

 

7. Summary and future works 
 

Using a set of Fourier series with parameters adjusted by a genetic algorithm, a simulated 
robot has been able to teach itself how to walk. We have described how to use an evolution-
ary algorithm to search for the optimal values for series coefficients to develop quite realistic 
walking sequences through the manipulation of up to 24 of the 25 motors used in the robot in 
relatively short time spans (certainly compared to human walking). The different evolution-
ary techniques used, such as custom cross-over operator and roulette wheel selection, were 
briefly described. The development of the algorithm used to determine the best walk se-
quences has been described in some detail. Work is continuing on using this technique for the 
development of controllers for humanoid robots, by again extending the number of degrees of 
freedom, and by the application of the techniques described here to different robot morpholo-
gies and environments. We feel that as well as aiding in the future development of humanoid 
robot locomotion, further research in this area may help in understanding certain aspects of 
human walking. 

 

 


