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Abstract. This paper presents an overview of our 3D Socoeuldtion Team. First we
describe the main strategies and methods usedxns\#005 3D Soccer Simulation team.
Then we address important features and improventkeatsare going to be in Nexus 2006.
The main development we made was using a two-péeleetion mechanism to determine
the best action among all possible ones carriecbguhe ball controller agent for a given
situation.

1 Introduction

Nexus 3D Soccer Simulation team developed by apoiuM.S and B.S students of Ferdowsi
University of Mashhad. The Nexus team successfudisticipated in Robocup 2005. Previously
our 2D team participated in Robocup 2003 in Padblexus 2006 Soccer Simulation 3D team is
mainly based on the architecture of Nexus 2005 &bt [1]. Our aim has been to construct
stable and flexible agent architecture for ourHartdevelopment and research. This architecture
is organized such that in each release of servecameapply the changes to this architecture,
easily [2].

2 Agent sKkills

As the primitive commands are rather difficult ftme decision-making component to use
directly, we develop some high level skills whicte &asy and convenient to use. These skills
include “dash to some position”, “kick the ball $ome position with a specified 3D velocity”,
“shoot the goal to a specified point”, “dribble $ome target position with a specified velocity”
and so forth. And the decision-making componenukhdecide to take some action to gain the
highest profit according to the world model.

The Skills are an abstraction to low level servemmands and should provide the decision
layer with high-level commands, like 'go to a cértposition’ or ’'kick the ball with a certain
speed’. The intercept skill (either of the ball amposition) will be implemented in a kind of
greedy fashion, i.e. drive in the direction of theget and slow down soon enough.



2 Action evaluation

To determine the best action among all possible caeried out by the ball controller agent for a

given situation, we first recognize the best ofheaction, i.e., the best shoot, the best dribble,
and the best pass, independently. It is clear thla¢n the best possible shoot is sought the pa-
rameters that affect the shooting action are censd] only. For dribble and pass actions the
same kind of process is followed. In the next phaseselect the best of bests, i.e., the system
chooses the best action among three best actioos, shibble, and pass. In this phase, common
measures are used in order to evaluate the acfiendetermine the priority in the second step,

the calculated priorities in the first step is nohsidered [2].

3 Team strategy

We use very simple team strategy, that is whenatent is the fastest player to get the
football, and then it tries to intercept the balhen the agent is not the fastest, it drives to its
strategic position; when the agent can kick thé, litakicks the ball directly to the opponent’s
goal, passes the ball to one of its teammatesréorpas a long dribble.

5 Futureworks

Our future work would mainly base on implementatamfnshoot module using Reinforcement
Learning approach. After tight considerations of Riethods we decide to implement Q-
Learning for this matter. We have our Q-Table atigi filled by manually collected data set.
Each row of Q-Table represents a state. We con8ig@rameters for defining a state which are:
ball distance to goal line, angle between ball godl sides, and goalie distance to goal line.
Uniform clustering is used to quantify them as lghditance to goal line are 21 clusters, angel
between and goal sides (Left bar, Right bar) areld&ters and goalie distance to goal line are 5
clusters. Thus, in this problem, the number ofestéd 21*45*5 which sums up to 4725.
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Soccer simulation as an effort for motivating reskars in the field of artificial intelligence amdbotic research has
always been a progressive approach. Robotic sé&eeparticularly good domain for studying multieag systems and
behaviors. In this paper, we describe researches lbp Nexus team from the prior 2D soccer simufaénvironment to
the curent humanoid simulation version. The mawetbment features were done on decision makirtgpraselection,
and coach strategy making modules using fuzzy logichanism and game theory approach. Some veny hasianoid
actions are also explained.

1. Introduction. Robotic soccer is a particularly good domain fodging multi-agent systems.
It has been gaining popularity in recent years wwiternational competitions like RoboCup which
is planned for the near future [1]. Soccer simalagnvironment is a client-server platform which
provides an excellent testbed for development oftiragent systems. Using this testbed frees
researchers fomr getting involved in the complesitf physical robot developmets.

Nexus, established in 2002, is the RoboCup sodomilation team of Ferdowsi University of
Mashhad, Iran. As an important first step, the tewas qualified to participate in RoboCup con-
test in 2003 Padova, Italy, in Soccer-2D leagu¢erfards, Nexus could go as high as the third
round in RoboCup 2005 Osaka, Japan, and rankecebet@ and 12" place among 33 teams.
The team has also participated and won some damreatjues in Iran during these times. Cur-
rently, Nexus has become eligible and was qualifiegarticipate in the RoboCup 2007 Atlanta,
US, in the humanoid soccer robot simulation leadgmehis paper, we propose a comprehensive



review of our research projects done in the RoboGupulation filed from the early
stablishement of the Nexus team.

The current development of 3D Soccer Simulationguealeads towards humanoid robots known
assoccerbot agent, which already can be controlled by a Ioeeel interface. However, control-
lers for these robots have to be developed in dalerovide an easy-to-use interface. The rules
has been maturated in many points and gained fattise issues that are essential from a techni-
cal point of view. Thus, the center of mass of@allots has to be on a certain height in relation to
the size of the feet. Fundamental for playing spece the abilities to walk and to kick. As body
contact between the physical agents is unavoidétidecapability of getting up after a fall is also
essential. For keeping a goal, the robot must ketalperform special motions.

4.1. Walking skill. Transferring the weight from one leg to the otrsrortening the leg not

needed for support, and leg motion along the wglKiinection are the key ingredients of this gait.
Walking forward, to the side, and rotating on thetsare generated in a similar way. As the first
step toward a skillful humanoid agent, walking éfprmed with a traditional control method that

follows a set of generated ZMbanng the path. This working dynamic model fordaprobot
walking is shown in Fig.6.
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Fig.6 ZMP trajectory

The trajectory tracking methods (specially generdtg a series of ZMPs) to control the agent
balance while moving has been investigated in [G&]nerated trajectory is followed by a precise
controller. The controller, knowing the exact patithe agent’s joints, determines the velocity of
the joint motors to direct different parts of thtebot along the computed path. The walking skill
of our agent is depicted in Fig.7.

1 Zero Moment Point



Fig.7 Soccerbot walking skill

4.2 Kicking skill. After inhibiting the walking behavior and stoppintipe robot moves its
weight to the non-kicking leg and then shortenskiicking leg, swings it back and accelerates
forward. The kicking leg reaches its maximal spe®eén it comes to the front of the robot. Same
principles for keeping robot's balance while walkilor running are applied in performing
actions like kick or dribble. The effectivenessusing dynamic methods like following the path
generated by ZMPs with the help of new control rmdthlike fuzzy PID control is already
proved in such fields [16, 17].

4.3. Goalie dive skill. The goalie is capable of diving into both direnso First, it moves its
center of mass and turns its upper body towardsefhevhile shortening the legs. As soon as it
tips over its left foot, it starts straightening iody again. While doing so it is sliding on itmtds
and elbows. These steps are depicted in Fig.8.

Fig.8 Soccerbot diving skill

5. Future work. Further improving the controller will be the nestage. Number of learning and

optimizing methods such as artificial neural net®oigenetic algorithms and other evolutionary
approaches will be considered to give the contrale adaptive smooth behavior. For example
genetic algorithm could be used to search thedi@jg path, computed by the traditional dy-

namic model, with a small margin to achieve a bettalking performance. Fuzzy logic, as a
powerful tool in dealing with imprecise environmgntan also improve the performance of the
designed controller.
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An Evolutionary Gait Generator with Online Parameter Ad-
justment for Humanoid Robots

A. Zamiri, A. Farzad, E. Saboori, M. Rouhani, M.dgkiébzadeh, A. Milani Fard

Abstract

This article proposes a new hybrid methodologyetbgr with an associated series of experimentsampl
ing this methodology, for an evolutionary gait gexter that uses trigonometric truncated Fouriereser
formulations with coefficients optimized by a Geoneilgorithm. The Fourier series is used to moaéhj
angle trajectories of a simulated humanoid robah @5 degrees of freedom. The humanoid robot is thi
study learns to imitate the human walking behawioflat terrains in a dynamically simulated envimant.
The simulation result shows the robustness of theldped walking behaviors even in extremely higt a
low speeds providing appropriate frequency. Nundfegange limitations were applied to the genetgoal
rithm used in this research to improve the learmiagod to less than 48 hours. The research seelks-t
prove upon the previous works on evolutionary gaiteration, in robots with lower degrees of freedlom
addition, the proposed solution adapts a hybridr@ggh, thereby avoiding the long learning curved an
unstable and slow gaits associated with evolutipapproaches.

Introduction



Building robots that imitate human behavior to perfdheir actions like walking and running is amangs
the most popular, and at the same time most compgks, in autonomous system design. This complexit
is mainly due to the difficulty to cope with the nyaDegrees of Freedom (DOF) of a humanoid robois Th
high number of degrees of freedom in a biped motaleot creates new problem spaces in control and
navigation where conventional methods often fatirsfil]. To reduce the complexity of the analysisme
researchers adopted a simplified dynamic model agdhe inverted pendulum with certain assumptimns
the robot’s motion and structure [2]. While thesagifications come handy in designing initial &ajo-
ries, there still exist significant differencesweéen the dynamics of a simple bipedal robot anérauime
humanoid robot with a high DOF.

A popular approach used for joint trajectory plaxgnfor bipedal locomotion is based on the Zero Maime
Point (ZMP) stability indicator. In many ZMP-basadjectory planning approaches, motion planning is
presupposed and performed in the Cartesian spabg [4,

Hence, evolving control systems for robot locomii® becoming a standard approach for the generafio
improved or newer control systems for robots [6dridus learning approaches for bipedal locomotiaveh
been proposed by several researchers. Lin Yarg ptesented the Genetic Algorithm Optimized Faurie
Series Formulation (GAOFSF) method for stable gaiteration in bipedal locomotion in [7]. They use
Truncated Fourier Series (TFS) formulations togettith a ZMP stability indicator to generate thadile
gaits for a simple seven-link planar robot. A génetgorithm is then utilized to search for optingalits
according to the objective functions considering $pecified constraints.

Some researches have used genetic algorithm totlglirgenerate joint trajectories for each step 9B,
These trajectories are then applied to joints regawhile walking. Although this method is sucsiedly
utilized for biped robots, the generated gaits wanbe changed to achieve desirable real-time matib
justment.

In this paper, automatic evolution of walking beloavin a simulated humanoid with online adjustable
speed is discussed. The robot in this study isnalated model of Fujitsu’'s HOAP-2 that is a genuine
manoid with two arms and two legs and 25 DOF (Fgy). The simulation is performed by Spark, a ge-
neric three-dimensional physics simulator basedOpen Dynamics Engine (ODE). Spark is capable of
carrying out scientific distributed multi-agent aalations as well as various physical simulaticarsging
from articulated bodies to complex robot environtadt0]. Robot models simulated in Spark can bdyeasi
controlled using programming languages like c++ @n@. A simple PD controller was implemented to
control the joint motors, but due to the adaptig&une of evolutionary methods, any other type ofticgler

can be used.

Since the movements of the robot are known to biegie while walking on flat plains, the motion efery
joint can be expressed in terms of a trigopnométdccated Fourier series. Coefficients of the Fowsézies
are determined by using a genetic algorithm. Eaclividual in the genetic algorithm contains a skt o
coefficients for every joint’s Fourier series, ahds defines a gait. These gaits are then testdtkinimula-
tion environment until the robot falls down oveethround or a sufficient amount of time passesTing
fitness is calculated based on the forward movernémhe robot and the total time of the test. Ontie
individuals of the current generation are testhd, riext generation is generated by applying GAaipes
over the best fit individuals. Using this methodekatively fast and stable walking gait is evolweithin a
three-day simulation time on a Pentium 1V 2.8GHzhiae with 1GB of physical memory.

2. Truncated Fourier series
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optimization process. For deeper look into
biped motion properties we recorded and
processed HOAP-2 (Figure. 2) walking gait whiclmiduded in the Webots simulation software
[12].

Figure. 2(a) and Figure. 2(b) give the knee andtt@jectories for the HOAP-2. These trajecto-
ries are identical in shape for both legs, butshified in time relative to each other by half lod t
walking period. The gait period is given by/@wherel is defined as the gait frequency in radi-
ans per second (rad/s). Because of the periodicenaf the motion we can formulate joint an-
gles using Fourier series. The Fourier Seriespréndic function of time f(t) can be written as:
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Where g and b are constant coefficients and t is the period. pegod can be calculated by
desired fundamental frequeneby t= 2r/ w

Since the servo motors used in the robot act asplasg filters, we expected to be able to omit

higher order frequencies without decreasing peréorte because these frequencies cannot con-
tribute to the motion that is actually being execuby the robot. Thus we use Truncated Fourier

Series (TFS) which have only the 3 first termsrigfanometric form of Fourier series.

f(t)= A{ao + Z(an cos? +b sm?t)}

Where @, b, and t are same as Equation 1, and a is an amplgcaling parameter used
for changing the step length. The parameter m aéters the number of terms in the Fourier
series. Using this formula significantly reducks subsequent computational load in the
search for feasible and optimal solutions usingv@#ch is discussed in next section.

One of the advantages of this approach is thadiaijy generation is done directly in the
joint space. As such, inverse kinematics computasaot required thus avoiding the singu-



larity problem. The walking rhythm, speed, and wadkpattern can also be adjusted online
through tuning either a single or two parameters.
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3. The genetic algorithm
As discussed in the previous section of this stedygh joint trajectory can be modeled by

a truncated Fourier series. A
genetic algorithm was used to
search for the optimal values
of the coefficients ) ) so as to achieve
stable walking behavior  with
desirable  char- (i acteristics for the
robot model. The first 3 terms of
the general ) ( trigonometric
Fourier series were used in the
formulations. This is due to the fact
that very high frequencies are
normally filtered © © “ by the joint
motors. The frequency of the
Fourier series is considered as a
constant value and can be
changed after the offline learning
is finished. This way every Fourier
series could be represented by 7

real numbers and as for HOAP-2 model, 25 serieseapgired to define a gait (One for each
joint). This makes the size of the individuals tielely large and as a result the learning time
gets very long. Therefore, some improvements shioalthken into consideration to make the
learning process more effective.

Joints of the left part of the robot’s body get 8@mme periodic values as the right ones
while walking straight, with a delay equal to aipdrtime and there’s no need to consider a
separate set of Fourier series for the right pathé chromosome structure. This makes the
chromosome almost half in size. Besides, the jamtsharge of controlling the foot can get



their values from the knee and hip joints as theyld always be kept parallel to the ground
line. (Figure. 3) Such automatic control of thetfmoextremely beneficial in terms of keeping
robot's balance, especially in the early stagetheflearning phase. Head joints can be also
ignored in the gait for the sake of simplicity.

With omitting excessive joints, the final chromosowmill contain 6 real numbers for every
one of the 12 primary joints. Considering this tigkly large chromosome size, there are 300
individuals per generation, and 900 generations.

The basic GA algorithm is as follows:

- A random number generator is used to give randeahvalues to Fourier series coeffi-
cients in chromosomes.

- The robot resets and locates in the initial posiin the simulation environment.

- Chromosomes are tested one by one. In every aiionlstep, the motor value for each
joint is calculated using a PD controller, basedhencorresponding Fourier series that is de-
fined by the current chromosome.

- Each test continues until the robot falls ove60rseconds has passed by. After the test is
finished the fitness is calculated on the basisheftime passed multiplied by the distance
from the start point and the next test starts.

- Once all chromosomes have been tested, the rwléteel selection decides which indi-
viduals are allowed to reproduce using mutation @odsover with specified probability.

A custom crossover was implemented that consistas simple two-point crossover to-
gether with a creep operator. The creep operatatoraly increases or decreases some real
values of the chromosome by a very small value detwd and 5. This crossover was applied
with the probability of 0.6 together with a mutatiwith probability of 0.05. Valid range for
the coefficients was also limited to -50 to 50. 3deralues were arrived at after some ex-
perimentation.

4. Initial results

The learning process takes about 7 days to comptieteever some decent walking be-
haviors begin to emerge within the second day ef éliolution. These walking gaits are
somewhat unstable and do not follow a forward ghtaline. After the 4th day of the process,
stable gaits evolve gradually. Figure. 4 showsaherage and maximum fitness values for
the robot over 460 generations. These figures weeaged over 3 runs. Note that although
elitism was employed, because of the accurate phgdinulation with noise, etc., this allows
for the maximum fitness to fall as well as risenfrgeneration to generation.

Studying the initial simulation results with diféart frequencies reveals that almost all of
the generated gaits during the learning phase cgawmee to a human-like walking behavior
with similar movement patterns. These similaritieslude human-like movements of the
hand and sinusoidal movements of the waist.
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5. The improved algorithm

In the initial experiments it was found that soramf trajectories are similar in all of the gener-
ated gaits. These common trajectories share the sharacteristics and differ in terms of their
speed and frequency. For example, the elbow jentb a little at the start of the walking and
stays almost the same during the rest of the morers¢udying these similarities helps to fur-
ther improve the evolutionary learning process émaoving the unnecessary parameters. Ex-
periments show that stable straight walking gaats lse generated by using only two joints of the
leg: the hip joint 3 and the knee joint. This siifightion affects the learning process dramati-
cally and decreases the learning time to less48amours (Figure. 5).

Based on the initial experiments, the fitness fiomctvas also changed in order to achieve
better results. In this stage the time factor vga®ied for the gaits that keep the robot walk-
ing for more than half of the test time. This hefaster gaits to get more fithess value over
the stable but slow ones. Furthermore, the aveaageunt of deviation was taken into ac-
count so that straight walks have more chance teelerted for regeneration. The simplified
model of fitness function is as follows:

if (CurrentTestTime < TotalTestTime / 2)
Fitness := Time * Distance

else

Fitness := Distance - AverageDeviation
fi

6. Online parameter adjustment

Walking behavior can be adjusted through changimg ar two parameters. By changing
the Fourier series’ frequency and joint movemenin gaesired walking speed can be
achieved dynamically. In the final experiments werevable to stop the robot after some pe-
riods of walking by gradually increasing frequeranyd decreasing controller’s gain.



The movement direction can also be determined &Yeth joint 1. This joint is responsible
for rotating thigh around Z axis. The value of tjumt was kept unchanged during the learn-
ing process, but it can be slightly modified whitalking to make the robot change its direc-
tion a few degrees. Figure. 6 shows the simulatdmbtrin Spark simulation environment
while walking with maximum speed.

7. Summary and future works

Using a set of Fourier series with parameters &&ljuby a genetic algorithm, a simulated
robot has been able to teach itself how to walk.N&ee described how to use an evolution-
ary algorithm to search for the optimal valuesderies coefficients to develop quite realistic
walking sequences through the manipulation of up4t@f the 25 motors used in the robot in
relatively short time spans (certainly comparedtonan walking). The different evolution-
ary techniques used, such as custom cross-oveatopemnd roulette wheel selection, were
briefly described. The development of the algoritbsed to determine the best walk se-
guences has been described in some detail. Wadnitinuing on using this technique for the
development of controllers for humanoid robotsabgin extending the number of degrees of
freedom, and by the application of the techniquescdbed here to different robot morpholo-
gies and environments. We feel that as well asngidi the future development of humanoid
robot locomotion, further research in this area rhelp in understanding certain aspects of
human walking.



