
DevelopmentDevelopmentDevelopment

Development

ArchitectureArchitectureArchitecture

Architecture

ofofof

of

aaa

a

HumanoidHumanoidHumanoid

Humanoid

SoccerSoccerSoccer

Soccer

SimulationSimulationSimulation

Simulation

RobotRobotRobot

Robot

TeamTeamTeam

Team

DescriptionDescriptionDescription

Description

ProposalProposalProposal

Proposal

forforfor

for

Robocup2008Robocup2008Robocup2008

Robocup2008

Apollo3DApollo3DApollo3D

Apollo3D

Junqing Wang, Guoping Luo, Ke Ding, Zhiyong Zhang
Nanjing University of Posts and Telecommunications, China

wjqffff@hotmail.com

Abstract.Abstract.Abstract.

Abstract.

This document describes the architecture of our humanoid soccer

robot for RoboCup 2008 3D Soccer Simulation – Apollo3D. In order to make

our research more efficient, we design and implement a solid system

architecture, which is based on simspark. The server and the multiple clients are

integrated and skills can be written in script.

Keywords:Keywords:Keywords:

Keywords:

simspark ruby robocup

111

1

IntroductionIntroductionIntroduction

Introduction

The model of robots in RoboCup soccer simulation 3D turns to be humanoid
and so many previous developing framework cannot be directly employed in
such this league. In a traditional way, we program in C++, and have to edit the
source code, compile it, and then test the binary. It is inefficient that clients
have to connect to the server each time when we only want to write skills
without playmode on, so we design a framework based on simspark [1] to avoid
these problems.

222

2

RelatedRelatedRelated

Related

ConceptionsConceptionsConceptions

Conceptions

Before introducing our development architecture, some conceptions should be
reviewed, which are SimControlNode, TrainControl and Ruby Script.

mailto:LNCS@Springer.com


2.12.12.1

2.1

SimControlNodeSimControlNodeSimControlNode

SimControlNode

Simspark regards every components of the simulator as separated nodes, such as
InputControl, RenderControl, NetClient, NetControl, AgentControl,
MonitorControl, MonitorLogger[2].
When a client connects to simspark, it adds an agent in AgentControl,
and AgentControl is responsible for the communications between the server and
agents.

2.22.22.2

2.2

TrainControlTrainControlTrainControl

TrainControl

We design a TrainControl modular, and it omits the network of AgentControl. In
other words, agents are embedded in simspark, without network connection.

2.32.32.3

2.3

RubyRubyRuby

Ruby

ScriptScriptScript

Script

In simspark, library zeitgeist implements a mechanism[3] and works with
classes objects, it provides a 'built-in' server: ScriptServer, which using Ruby
script currently.
In general, we code in C++, and we have to do our work with the traditional
method. However, compilation is time consuming, with the ScriptServer we
can develop skills more efficiently with the new method:

Edit Build Run

Design skill in ruby
script

Run and Test
immediately

Traditional method:

Our method:

Fig.Fig.Fig.

Fig.

111

1

...

.

Progress of developing skills with two methods

Admittedly, although programming in script can reduce the time of adjusting



parameters, it's not easy to debug in script. Nevertheless, we can still convert the
ruby scripts into C++ at the last stage.

333

3

Apollo3D'sApollo3D'sApollo3D's

Apollo3D's

DevelopmentDevelopmentDevelopment

Development

ArchitectureArchitectureArchitecture

Architecture

There are two modes that be switched in TrainControl:

1. Network Mode.
An agent connects to rcssserver3d

StartCycle:
SenseAgent: network->GetMessage
ActAgent: behavior->Think, network->SendMessage
EndCycle:

In this mode, only one simcontrolnode (TrainControl) is running.

2. Debug Mode.
An agent connects to the internal server without network

StartCycle: agent->RealizeActions
SenseAgent:
ActAgent: behavior->Think
EndCycle: agent->QueryPerceptors

In this mode, we can choose to render, input or logger to run, it's essentially the
same as as simspark except that agents communicate without network.

We illustrate a graph of the debug mode as follows:



DebugRender

Render

DebugInput

Input

Information

Fusion and Update
Simulation Server

MonitorLogger TrainControl

Skills

using Ruby languageusing C++ language

Behavior
Command Message

Fig.Fig.Fig.

Fig.

222

2

...

.

Architecture Graph in Debug Mode

In the loop of Simulation Server, simcontrolnodes are specific for different
purposes, we get two import aspects used:

(1) DebugRender, DebugInput: we can draw our debug information in the screen
directly when the simulation is running, and with the usage of debuginput,



reset the position of objects and create a scenario that can be easily achieved at
any simulation time.

(2) TrainControl: as described above, it’s responsible for communicating with
agents’ behaviors.

Additionally in the debug mode, we can do some records of dynamic
information, for example, the prediction of ball’s movement has been successfully
achieved using this method.

Fig.Fig.Fig.

Fig.

333

3

...

.

Prediction of ball’s Movement



444

4

ConclusionConclusionConclusion

Conclusion

In this paper we present an architecture for developing a humanoid soccer
player agent, we'll continue to work out some advanced features, such as setting
scenes for creating agents' skills and for cooperation among agents.

ReferencesReferencesReferences

References

1. Markus Rollmann, Spark-a generic simulator[D]. Diploma thesis,

Koblenz-Landau University, 2004.

2. RoboCup3d server develop group. RoboCup Soccer Server 3D Manual[Z], 2007

3. RoboCup3d server develop group. RoboCup Soccer Server 3D Howtos[Z], 2007


