
Aria3D Research Proposal for 2007
Competitions

Arman Sarrafi, Golnaz Ghiasi, Kourosh Meshgi, Moloud Shahbazi

Department of Computer Engineering and IT
Amirkabir University of Technology
P.O. Box 15875-4413, Tehran, Iran

{sarrafi, golnaz.ghiasi, meshgi, moloud.shahbazi}@gmail.com

Abstract. In this paper we will present a description of the architecture
of our 3D soccer player agents in Aria team and the algorithms we have
used for controlling the robots. Since it is a new brand in RoboCup soccer
simulation, our development mainly focuses on the low-level controllers
for the simulated robots. We have tried to make it possible for the robots
to walk smoothly without collapsing. Here, we present a hierarchical
architecture for our agents and describe how we narrow it down from
high level decisions to joint control commands.

1 Introduction

Soccer simulation is an excellent test bed for researchers in the fields of Robotics
and Artificial Intelligence. Humanoid 3D soccer simulation is a new league in
RoboCup which benefits from a more realistic model for the simulation of soccer
player robots. As a result, low-level control mechanisms has been much more
important compared to 2D and 3D-spheres competitions. At the current stage,
the problem of making a team of these robots mostly falls in the field of robotics
and needs an insightful view to kinematics and dynamics[1].

In Section 2 we will present our proposed architecture. Then, in Section 3 we
will mention the algorithms we are going to use through the different layers of
our agents’ architecture. We will conclude in Section 4.

2 Multi-layer Architecture

Facing this view to RoboCup competitions agent programming, we divide it into
four major levels and thus with conquering each of them the main target will be
achieved. Robocup is a multi-agent competition. Therefore, the views are:

1. Multi-agent Level View
2. Movement Level View
3. Joint Level View
4. Rotation Level View



Fig. 1. Hierarchy of Agent Think Center: 1- Decision 2- New Position 3- Joint Angle
4- Body State 5- Angular Velocity[i] 6- Movement Power

Generally, the following sequence happens during a game: A robot makes a
decision regarding of field status, ball position, other robots position and for-
mation, etc. This decision is very high-level (i.e. robot decides to cut through a
pass between two other robots). This decision makes robot to move from current
position (x1, y1) to a target position (x2, y2). Several rotations in robot joints
must be done to able it to pass this way, i.e. a sequence of angles is prepared
to joint to let the robot run to target with a definite speed. In order to close or
open a joint from x1 to x2 it must be supplied with angular velocity and its the
final data one must achieve to attend in a match.

To implement these levels, knowing that major decision of robot must be
transformed to low level commands which will be executed in server sequentially,
the following data structures are used: 1.In Multi Agent Level, robot decides
to move from current position to another and the power this movement must
have. Regarding this decision, the positions of field must be defined uniquely.
On the other hand the state of robot can be movement with ball or movement
without ball. The final structure is in the below form. Coordination in field
(X, Y ) Position of robot regarding the center of the field Direction of body θ
The angle between the orthogonal vector of robots chest and the line along the
field Power of movement (P); Its a constant value for movement of body without
ball which needs balancing, and may be more or less for action that interact
with ball such as dribble, shoot ... So the quadruple (X, Y, θ, P) is the product
of this level that is delivered to lower level. 2.In Movement Level, the current
position of robot will be determined and amount of required movement to reach
the target which is designated in upper level can be calculated then. This level
calculates ∆x, ∆y and ∆θ and prepare (∆x,∆y,∆θ, P ) to lower level (note that
P is transited from upper level). Current state of robot is obtained using visual
information of robot and is used as (X0, Y0, θ0) in the calculation. To determine
this information visual information will be treated as follows:



3.The purpose of Joint Level is to find a sequence of joint angles that move
robot for (∆X ,∆Y ,∆θ). Keeping the robot balanced during this sequence is
necessary. Found sequence defines change of angles for all joints during a period
of time. The main task of this level, in fact, is to fill the sequence of angle changes
for joints with the values that previously executed algorithms, for example to
make a robot walk a sequence of angles must be applied to all joints. The output
of this level will be in the following structure: The soccerbot has 18 joints that 6
joints of them has double move form (universal joints), Thus can be considered
as 2 joints. So finally the state of robot can be described with an array of length
24 which the i th element indicates the change of angle in joint i. This array,
named x, is initiated with zero which means no change. This array and the P
parameter will be sent to lower level in the form (P, α[24]). In this level, balance
of robot must be maintained regarding the forces which are applied on robots
from different directions. To calculate α from x, y and z there are some equations
that will be implemented later with balance equations.

4.The goal of Rotation Level is to translate robot change sequence to a chain
of commands to each joint. These commands are in the form of angular velocity
to joints. Regarding to input of this level (P, α[24]), angular velocity can be
inferred from the combination of P and α[i], In this layer there is a circular
queue for each joint and the value of angular velocity (including zero) is stored
in it and the rear and front of each queue that are the same for all queues are
controlled centrally. This feature enables the robot to correct its moves, which
will be explained later. In each cycle, server reads a command from head of the
queue and applies it to corresponding joint. In this layer final angles of all joints
as will described in move patterns section are calculated and saved, forming the
Robot Body State.

3 Algorithms

3.1 Algorithms of Multi Agent Level

Robocup competitions is multi agent competition, thus multi agent algorithms
are needed to decide in these environments. These algorithms are not the point
of present work and we will use the 2D and 3D common algorithms of previ-
ous years. Obviously, the resulted decisions must be mapped to the (X, Y, θ, P )
quadruple.

3.2 Algorithms of Movement Level

At this stage, robots must be aware of their positions in order to determine
their distance to goal position and type of required moves. This milestone can
be accomplished with assist of robot vision. As it was said before, the output
of this level is the triple (X0, Y0, θ0) that indicates the current position of robot
and the next changes could be identified regarding target position (Xg, Yg, θg) .



Localization of Robot can be done using agent vision and distance parame-
ter. Global position of flag i: (Xfi , Yfi , Zfi)

Global position of robot: (XM , YM , ZM )

Relative position of flag i received from server: (dvi , θvi , φvi)

(Xfi
−XM )2 + (Yfi

− YM )2 + (Zfi
− ZM )2 = d2

vi

We can choose 3 flags out of 8 existing flags of the field to calculate: Deter-
mining the global angle of the robot with ground as zero level: First we obtain
angle of joint from robot joint sensors. Then we calculate robot global angle.
Finally we generate all of the robot position parameters. Head angle regarding
to X, Y, Z axis: (θG, φG)

Relational position of flag I and robot:

(dRi , θRi , φRi) = SphericalPolar((Xfi , Yfi , Zfi)− (XM , YM , ZM ))

θRi
= Arctan((Yfi

− YM )/(Xfi
−XM ))

φRi = Arctan((Zfi − ZM )/
√

(Yfi − YM )2 + (Xfi −XM )2)

θG = θRi
− θvi

3.3 Algorithms of Joint Level

At this stage robot follows a sequence of moves regarding the requested changes.
This sequence, as explained before, can be generated by experience (by generate
and test approach) or in algorithmic manner. In the present work, we try to
find this sequence in algorithmic way. In each of these ways, joints are fed with
sequential values. In this text we model this problem as a Search Problem and
then suggest a way to solve it, but not in many details in solution: Initial State
The soccerbot has 18 joints that 6 joints of them has double move form (universal
joints) , that can be considered as 2 joints. So the state of the robot can be
described with these 24 joints. To describe these joints, we consider their angle
from the stand up position, called relaxed position from now on, as if we look
at robot form its side while its faced to right, the counter clock wise moves are
assumed positive while clockwise ones are negative. Angles are also measured in
this system.

The other defining parameter of robot state is its direction and current po-
sition (as defined in multi agent level implementation). If we assume the initial
state of robot as (x, y, θ) = (0, 0, 0), the current position will be (x0, y0, z0). So,
the initial state of search problem includes:



1. displacement of angles from the relax position (α[i]i = 1, 2, ..., 24)
2. coordination of robot (x0, y0)
3. direction of robot (θ0)

Operators Assign a valid value to one or more joints. Invalid values are specified
in below: Out of Range values: Each joint has some limits in movement that
is able to move far to these limits. For example the thigh joint is limited to
the range of [−90,+90] and cant accept values of out of this range. Physical
Interference of another Object: In the case of unpredicted incident to ground or
collision with other parts of robot, the more is evaluated as invalid and cant be
performed. Losing Balance: The move is invalid if it results to losing balance or
incident to ground (an unpredicted move, it excludes standing up procedure).

Cost Function The length of sequence obviously longer sequences results in more
time cost. We assume that other limitations like batteries do not constrain our
moves on joints.

Goal Test The goal state of robot including αf [i]i = 1, 2, ..., 24, Xf , Yf , θf is
compared with current state. This requires calculation of current Robot Body
State regarding last operation. There are several last issues on determining initial
and goal state:

1. There is no coordination change during in-place action(like standing up)
(x0, y0) = (xf , yf )

2. All paths through the goal must be saved, in order to replace them with
original ones if conditions changed. For example for walk pattern: we use
the sequence with more stable (balanced) states in noisy environment and
shorter step in surfaces with less friction.

3. Long distance and curve paths must be split to smaller fixed-length move-
ments parts and then translated to their pattern.

4. The real goal test is applicable by small changes in simulator.
5. The goal state must be a relax state (α[i] = 0i = 1, 2, ..., 24) to ease cascading

patterns.

This search problem is looking for compatible joint angle values which can
make the desired goal. So the problem can be modeled as a series constraint
satisfaction problem (CSP) that work in a special framework. This framework
has its own rules that the most important one is maintaining the balance of
robot. Finding an integrated approach will be one of our further works. Resulted
patterns are stored in tables in Joint Level. When an input comes from upper
layer, after being split into different pattern (i.e. diagonal move = rotate direct
move rotate) and extracted from corresponding table, and will be sent to lower
layer in form of sequence of joint angle changes. As said before, maintaining
robot balance and calculating angles from their coordination is possible through
robot kinematics. Merging the equations derived from forward and reverse robot
kinematics, the following equations are resulted:



In order to control the robot, proper angles are needed to reach a desired
state. Assume we want to move point P (it is placed at the end of 2 connected
moving arms in 2D scene). Now we want to calculate angles of arms, θ1, and θ2 as
shown in figure 1. First we assume θ1, θ2 are defined and calculate coordination
of P:

XP = r1cosθ1 + r2cos(θ1 + θ2)

YP = r1sinθ1 + r2sin(θ1 + θ2)

We can use transformation matrix in place of above equation.
Consider hand of robot with 3 joints. One of these joints has got 2 parameters,

so there are 4 parameters θ1, θ2, θ3, θ4 We will apply these rotations, one by one,
1. First rotation of arm joint 3 (θ3) around x axis
2. Second rotation of arm joint 1 (θ1) around y axis
3. Third rotation of arm joint 2 (θ2) around z axis
4. Forth transmission in amount of length of upper-arm through x axis (r1)
5. Third rotation of arm joint 2 (θ4) through y axis
6. Sixth transmission in amount of length of lower-arm through x axis (r2)

Fig. 2. Transformation matrices

We can have one matrix by reversing the production of above matrices, by
multiplying this matrix to position of shoulder and the position of

3.4 Algorithms of Rotate Level

In this level, angular velocity of each joint will be calculated from P and α[i], and
then adds to joints queue. Fail detection algorithms in this level prevent total fail-
ure in robot actions. In this level, Robot Body State is calculated after applying



angle change theatrically. Real Robot Body State is measured through sensors
and then compared with the first one. In the case of not matching (Matching
function uses fuzzy algorithms), real state which is derived from sensory infor-
mation (not balancing, falling down, ... ) is stored as robot current body state
and send as a feed back to Joint Level in order to finding new angles which
robot can recover its state with (standing up from lying on back and front state,
bowing to one side to maintain balance, ...)

4 Conclusion

In this paper we presented what we have done for developing a humanoid soccer
player agent so far, and what we are going to do in the future. After develop-
ing these ideas successfuly, the next step will be moving to a higher level of
abstraction for the agents.

References

1. James M. Jeanne: Developing Adjustable Walikng Patterns for Natural Walking in
Humanoid Robots. Dr. Adrian Stoica, Jey Propulsion Laboratory, 2004


