
SEU-3D 2006 Soccer Simulation Team

Description

Yuan XU, Chunlu JIANG and Yingzi TAN

Southeast University, Nanjing 210096, China
xuyuan.cn@gmail.com, JamAceWatermelon@gmail.com, tanyz@seu.edu.cn

Abstract. This paper shortly describes the main features of the SEU-
3D soccer simulation team, which participates in the RoboCup compe-
tition since 2005. In the last year we mostly concentrated on the base
code and the lower layers skills of agents. After a few months research
and development, SEU-3D has made great improvement.

1 Introduction

SEU-3D was started by two students from Southeast University for their BS the-
sis. 3D soccer simulation is a new and more realistic part of RoboCup simulation
league in comparison with 2D soccer simulation. As it’s the first experience of
our team in 3D league, most of the team’s work has been spent on developing a
powerful and developmental base code and primary skills.

The SEU-3D simulation soccer team has successfully attended two competi-
tions: ranked 7th in the China RoboCup 2005 held in Changzhou, China; and
ranked 4th in AI Games 2005 held in University of Isfahan, Iran.

The reminder of this paper is organized as follows. Section 2 briefly describes
our agent architecture. Section 3 illustrates the world model. Section 4 shows the
individual skills and strategy. Section 5 enucleates our development tool. Section
6 is the conclusion and future work.

2 Architecture

SEU-3D layered agent architecture[1] consists of three layers including iteration
layer,skills layer, and decision making layer and it can be shown as a whole in
Figure 1.

Nevertheless, this is not strict layered agent architecture, it has been added
new ideas to design SEU-3D’s architecture. In this architecture, it is also possible
for a low-level behavior to call a more abstract one, and a high-level behavior
to call a low-level behavior directly without calling a mid-level behavior, etc.
Consequently, most components of agent have only one instance, and to provide
a global point of access to it. In other words, a agent must have a single world
model, a single skill model and a decision model, etc. Furthermore, all models
should call each other easily.



Fig. 1. SEU-3D Architecture. The components which binded together can call and
impact each other.

Singleton[2] is widely used design pattern, and suitable for components of
agent. Using a global object ensures that the instance is easily accessible but
it doesn’t keep you from instantiating multiple objects - you can still create a
local instance of the same class in addition to the global one. Singleton pattern
provides an elegant solution to this problem by making the class itself responsible
for managing its sole instance. SEU-3D uses a template singleton basic class[3]
to implement this architecture.

3 World Model

In order for an agent to behave intelligently it is important that he keeps a
world model that describes the current state of the environment. The agent can
then use this world model to reason about the best possible action in a given
situation[1].

3.1 Self Localization

The basic function of world model is self-localization, and estimating self velocity.
In current rcssserver3d, the agent has a 360 degrees view of the field and no
direction, the agents location can be computed using relative position of only
one flag. However, in order to minimize the noise, all 8 flags’ information are
used.

Particle filtering[1] and Kalman filtering[4] are both used in SEU-3D.

Step 1 estimates intermediate position P1 and velocity V1 using information of
current world model.



Step 2 Particle filtering generates another intermediate position P2 and velocity
V2 using information of all flags.

Step 3 Kalman filtering generates the preciser position, using P1, V1, P2 and
V2.

Step 4 considering some special states that the agent’s position be reset(ie.
beaming and flicking).

Particle
filtering

Kalman
filtering

World
memory

Executor

Action
Eatimation

Vision

Action

(P,V)
(P1,V1)

(P2,V2)
(P,V)

Fig. 2. SEU-3D Self-localization filtering.

The whole process can be seen in Figure 2. Using this method, the average
error of position and velocity are both decreased(See Table 1).

Table 1. The error of self-localization and estimating self velocity

Error type Position(m) Velocity(m/s)

Average error 0.03 0.10
Max error 0.10 0.50

3.2 Update Ball’s Information

Another basic function of world model is calculating the global position and
velocity of dynamic objects. In SEU-3D, the ball’s information is updated by
Kalman filtering[4].

Step 1 estimates intermediate position P1 and velocity V1 using information of
current world model.

Step 2 calculate the ball’s information P2, V2 using visual message. Note, here
V2 is equal to the sum of agent’s velocity Va and the relative velocity Vr.
Using the distance variance ∆r and direction variance ∆φ and ∆θ which are



included in visual messages to estimate the ball velocity Vr(vrx, vry, vrz),
according to the following equations:

vrx = (∆r cosφ−∆φr sin φ) cos θ −∆θr sin θ (1)

vry = (∆rcosφ −∆φr sin φ) sin θ −∆θr cos θ (2)

vrz = [∆φr + (vx cos θ + vy sin θ) sin φ]/ cosφ (3)

Step 3 Kalman filtering generates the preciser position, using P1, V1, P2 and
V2.

Step 4 considering some special states.

Using this method, the average error of ball’s position and velocity are both
decreased(See Table 2).

Table 2. The error of ball position and velocity.Note,here d means the distance between
the agent and ball.

Error type Position(m) Velocity(m/s) P(m)(d < 5m) V(m/s)(d < 5m)

Average error 0.05 2.50 0.03 1.50
Max error 0.25 5.00 0.10 2.50

4 Skills and Strategy

4.1 Skills

Currently, Individual skills is the focus of our research , for it is important to
ensure the performance of the whole team.

Ball interception is one of the most important available player skills that
is frequently used by agent. SEU-3D ueses an analytical method with the help
of neural network.

In order to implement this hybrid method, some basic functions are needed:

- a high-performance drive skill, which returns both drive force and drive time
- a precise estimation of the free motional ball’s information in the next sim-

ulation step
- the judgement of successful intercepting(ie. if the ball is ready to be kicked)
- a well debuged iteration loop

Dribble is an useful skill when agent possessing the ball. In current server,
agent max speed is about 1.6m/s, the simulation step interval time is 0.01s, and
the kickable margin is about (0.331m, 0.4m). The ball and the agent have the
same motion direction in dribble mode. That means there is at least 4 simulation



0 5 15 20 25 30
0

0.5

1

1.5

2

2.5

3

time(s)

sp
ee

d(
m

/s
)

Agent Speed
Ball Speed

Fig. 3. The agent speed and ball speed while dribbling.

steps before agent collides with the ball when agent is in full speed. So, a full
speed agent have enough time to kick the ball before he collides with the ball.
SEU-3D has implemented the dribble without deceleration(See Figure 3).

Contemporary, SEU-3D agent also can pass, shoot, block, clear ball, etc.
And we note that taking advantage of body is very important, this would be our
future work. All kinds of AI algorithm will be imported to enhance SEU-3D’s
skills.

4.2 Strategy and Decision Making

Currently, we do not have much new ideas about this problem, we are planning
to use the MDP decision method. There is a simple model of the decision for
our qulifacation team. The method in references like[1] and has been added our
own ideas to design this simple strategy in order to fit the 3D enviroment.

The strategy is based on the following principles:

- keeping the distance between ball and our goal as far as possible
- if possible, and in shoot area, shoot as soon as possible
- if possible, possession ball (ie. pass or dribble)

The agent can only accelerate the ball radially away from the body. This
means that agent have to move to special position, so that it can kick the ball
to the desired direction. But in some cases, opponents don’t allow the agent to
spend much time. Agent has to kick before opponents break it. The idea, freedom



which indicates how much time and space the agent has, has been added. Agents
make decision depending on the freedom value. If the freedom value is high, agent
will possession ball. Otherwise, agent will clear the ball.

In our implement, freedom is calculate according to the following factors:

- the position relationship of ball, agent and the closest opponent

- the distance between agent and ball

- the distance between the closest opponent and ball

Integrates all the factors, and then normalizes the value by a sigmoid function.

5 Development Tool

Besides using the defined team developing rules and standards, a time saving and
high performance utility, named trainer, is used to test server enviroment, train
the agents and calculate statistics of matches. MATLAB is a high-performance
language for technical computing. It integrates computation, visualization, and
programming in an easy-to-use environment where problems and solutions are
expressed in familiar mathematical notation. We analyse the simulation data
both from the trainer and agent, with the help of MATLAB.

The main parts of the utility are:

1. Trainer

- connect to the rcssserver3d or load a logfile

- send commands to server to set the training state

- log every objects’ global position and velocity

- calculate statistics of matches

2. MATLAB

- m-files which analyse the simulation data

- use kinds of Toolboxes, for example, training the Neural Network

6 Conclusion and Future Work

In this paper, we described a few aspects of our current team. We addressed the
way we implemented the world model, skills, and simple strategy. In addition,
the development tools are described.

The first results achieved by SEU-3D team are very hopeful. But there is
much work to do in the future.

In our project, the most two important objectives are improving the indi-
vidual skills and implementing a good decision algorithm and planning. At the
same time, we are going to develop the biped simulation robot, which will be
used in the furture.



References

1. Remco de Boer, Jelle Kok: The Incremental Development of a Sythetic Mu,The
Incremental Development of a Synthetic Multi-Agent System: The UvA Trilearn
2001 Robotic Soccer Simulation Team. Faculty of Science,University of Amsterdam
(2002) 43-56 159-168

2. Danny Kalev: Implementing the Singleton Design Pattern.
http://gethelp.devx.com/techtips/cpp pro/10min/10min0200.asp

3. Scott Bilas: Game Programming Gems. Charles River Media (2001) 36-40
4. Rudolf Emil Kalman: A New Approach to Linear Filtering and Prediction Prob-

lems (1960)


