
Team Description

Mainz Rolling Brains 2006

Robert Deußer, Christoph Schneider, Peter Sinzig, Sascha Metz

Department of Computer Science
Johannes Gutenberg-Universität Mainz

D-55099 Mainz, Germany

1 Introduction

Last year we introduced a whole new decision layer design [1] based on general
principles for coordinated multiagent decision making. The new design worked
out well concerning the coordinated decision making. But since we used the
world model and basic skills of our 2004 agent [2] the overall performance of last
years MRB agent was not as good as we hoped for.

This year we will introduce a new approach to extract more reliable data
from the sensed information. This approach is based on applying a Kalman-
filter and is described in section 4. We plan to improve our agents basic skills by
adjusting them to the more reliable information provided by the Kalman-filter.
Furthermore we will improve our agents positioning behaviour to better exploit
the possibilities supplied by our decision layer design. We hope to incorporate
the new offside rules of the 3D-Soccerserver into the positioning behaviour. Soc-
cer concepts like an offside-trap fit nicely into our coordinated decision making
process and we will experiment with them to see if we are able to successfully
apply them to the 3D-Soccerserver domain.

In the following section we give an overview on our decision layer design.
In section 3 we will present a short overview of the overall agent design and
give some hints on how the general approach is realised in the decision layer.
Thereafter we describe the new Kalman-filter we use. We conclude with section
5 where we sum up the current status.

2 Coordinated Multiagent Decision Making

Our approach on coordinated multiagent decision making is based on our last
years agent [1]. Even though explicit communication is possible with the new
3D-Soccerserver, we do not use communication to achieve a coordinated team
behaviour. The basic idea of our approach is still to choose some team action

based on a clearly structured situation evaluation first and to deduce the ap-
propriate individual actions after that. In the following paragraphs we will first
describe the different types of actions and situations we use. Then we will show
how we arrive at the individual action to be executed by the agent.



2.1 Actions

In order to achieve a coordinated team behaviour, we introduce team actions

aT which are chosen from a small set of predefined team actions AT . Each team
action aT consists of eleven individual actions aP

∈ AP , i.e. one for each player.
For example, the team action could be “pass from player 5 to player 7”. It
consists of the following individual actions:

– player 5: kick the ball towards player 7
– player 7: prepare to receive the ball from player 5
– every other player: choose an appropriate position

The individual actions contain generic instructions on how to achieve the goal
associated with the action. If necessary they store information on the action
like involved players or the progress of the action. The individual actions use
the agent’s behavioural skills to interact with the simulation. Following a least
commitment strategy the skills use the most recent information available to
the agent. This means that a team action and its associated individual actions

can be executed successfully, even if the state of the simulation has changed
with respect to the state it had when the team action was chosen. But if the
state of the simulation has changed to a degree, that a different team action

becomes sufficiently more promising than the currently selected, this team action

is selected.

2.2 Situations

Ideally at each time step all players in the team should participate in one single
team action and follow the inferred individual actions to accomplish this team
action. To increase the probability that all agents choose the same team ac-
tion, we use a clearly structured and systematic decision process. Therefore we
differentiate between three different kinds of situation descriptions:

– The world situation sW is a complete state description of the full world
(estimated by the world model), i.e. a large vector consisting of positions
and velocities of all players and the ball.

– The tactical situation sT
∈ ST describes the situation the whole team is in

on an abstract level. Examples are: “ball possession and ball in front of the
opponent’s goal” or “not in ball possession and ball somewhere in central
midfield”. Thus tactical situations are from a finite (and very small) set. A
hand-coded decision tree classifies world situations into tactical situations
(see section 3).

– The succession state sS is a vector consisting of No objectives which de-
scribe the outcome of a team action on an abstract level. Examples for such
objectives are ”chance to score a goal” and ”safety of ball possesion”. Every
team action has a corresponding succession state to describe what could be
achieved by applying the team action.



2.3 Action Selection

The heart of our action selection algorithm is a function that calculates the
utility value u

(

aT
)

of a team action aT as

u
(

aT
)

= p
(

aT , sW
)

No
∑

i=1

wi,sT sS
i

(

aT
)

(1)

where p(aT , sW ) is the probability of successfully applying aT in the current
world situation sW . The weights wi,sT depend on the tactical situation sT and
the specific objective. They describe the importance of the specific objective in
the current tactical situation. For example, if the ball is near the opponent’s goal,
it may not be important to draw nearer to the goal, but to shoot towards the
goal. The degree to which the team action will accomplish a specific objective
sS

i

(

aT
)

is derived from the succession state of the team action.
To select an action we first determine the tactical situation sT and the appli-

cable team actions aT with their corresponding succession state sS
(

aT
)

. These
are evaluated using equation (1) and we choose the team action aT with the
highest utility. Finally we deduce the individual action aP from the chosen team
action. A more detailed view on our decision layer design can be found in [3].

3 Architecture

Our agent is split into three layers. The basic layer, which handles the commu-
nication with the server, the transformation layer, which acts as an abstraction
between the basic layer and the third layer, the exchangeable decision layer (see
Figure 1).

As the basic simulation engine is based on SPADES, we use the SPADES
agent library from P. Riley [4] to handle the communication with the server. We
use the same communication scheme which was used by our 2D agent, i.e. the
agent waits for a message from the server and updates its world model according
to it. Then the player selects an action based on the new information, sends it
to the server and starts waiting for a new message from the simulator. As we
are still using the same scheme as in 2D it will be easy to adapt our agent to
the proposed new timing model for this years competition.

Our world model, which is part of the second layer, is still quite simple. It
stores information about all world objects the agent has seen. Therefore it is up-
dated every time the player gets new sensor information. Using this information
the world model calculates the agent’s position with a “weighted flag” algorithm
[5]. To reduce the error on the position, the velocity of the player and its old
position is also considered. The world model also tries to calculate the velocity
of the ball by simulating it forward from the last time it was kicked using a
movement model improved by a Kalman-filter. (c.f. section 4)

Another part of the second layer are our basic skills. These are an abstraction
and extension of the commands provided by the server, as they contain routines
for driving to a position or kicking the ball into a specified direction.



Fig. 1. Architecture of the MRB agent.

In the decision layer the concept of coordinated multiagent decision making
as described in section 2 is realized (see Figure 1). We determine the tactical
situation based on the information of the world model. Depending on this tactical
situation possible team actions are generated. The Evaluator rates them and
chooses the team action to be performed. The agent’s individual action is then
derived and carried out using the agent’s basic skills.

4 Applying a Kalman-filter to approximate velocities

According to the paper of R. Kalman [6], we implemented a Kalman filtering
algorithm to get a better approximation of noisy values sent by the server.

In the simulation environment an agent receives noisy coordinates of every
object which is in its vision range. Therefore it is hard to calculate the velocity of
an object because the position seems to change even if the object is not moving.

In [7] we give an implementation of a Kalman-filter to approximate the ball
velocity. If ball movement changes due to an agent or a game situation like a
kick in, the internal state xk of the ball is initialized with the actual position. A
ball movement model M uses xk to calculate a prediction x̂k+1 of the following
state xk+1.

x̂k+1 = M · xk + uk, (2)



where uk represents external factors like gravity which influence the movement
of the ball.

Finally our algorithm compares x̂k+1 with the sensed state xk+1 of the actual
ball position. The difference is then used to create an error model for further
predictions.

Using this technique our ball movement model gets more accurate. Our anal-
ysis shows, that this approach improves the process of ball velocity estimation.
After a few steps the approximated ball velocity converges towards the real ball
velocity.

5 Conclusion

We finished implementing the general approach for coordinated multiagent de-
cision making introduced last year. We presented Kalman-filters as a way to
improve the accuracy of the ball velocity. This year we will use this technique
to improve the knowledge of the positions in the simulation environment and
adapt the team to the new possibilities like communication and offside in the
simulation environment.

References

1. Flentge, F., Schneider, C., Jung, T., Metz, S., Deußer, R.: Mainz Rolling Brains
2005. In: RoboCup 2005 Symposium papers and team description papers (CD-
ROM). (2005)

2. Arnold, A., Flentge, F., Schneider, C.: Mainz Rolling Brains 2004 - 3D. In: RoboCup
2004 Symposium papers and team description papers (CD-ROM). (2004)

3. Deußer, R.: Flexible Agentenarchitektur zur Unterstützung kooperativer Entschei-
dungsfindung. B.sc. thesis, Johannes Gutenberg-Universität, Mainz (2005)

4. Riley, P.and Riley, G.: Spades – A distributed agent simulation environment with
software-in-the-loop execution. In: Winter Simulation Conference Proceedings.
(2003) 817–825

5. Arnold, A., Flentge, F., Schneider, C., Schwandtner, G., Uthmann, T., Wache, M.:
Team description. Mainz Rolling Brains 2001. In: RoboCup-01. Robot Soccer World
Cup V. (2002)

6. Kalman, Rudolph, E.: A New Approach to Linear Filtering and Prediction Prob-
lems. Transactions of the ASME–Journal of Basic Engineering 82 (1960) 35–45

7. Sinzig, P.: Weltmodellierung in der RoboCup Soccer Simulation League mit Hilfe
von Kalmanfiltern. B.sc. thesis, Johannes Gutenberg-Universität, Mainz (2005)


