
MRL Soccer 3D Team

Mahmood Rahmani, S.Mohammad H.S.Javadi, Ashkan Ferdowsi,
Mahdi N. Moghadasi, Siavash Aslani, , Nima Shafii

Mechatronics Research Laboratory, Qazvin Azad University, Qazvin, Iran
{rahmani_mahmood, erfanjavadi, af_programmer,
 mahdinaser, siavash_a_q, wwwnima}@yahoo.com

Abstract. This paper briefly describes an effort to develop a soccer 3D team
named MRL. The development concludes three main divisions: noise reduc-
tion, low-level skills, planning. Soccer Server applies a bit of a noise to sensory
information and sends it to players. The noise decreases the accuracy of some
sensitive low-level skills such as ball handling. MRL uses a known method,
DKF (Discrete Kalman Filtering) to reduce the noise. Linear regression method
was used for agents' self localization. MRL developed a specific planner by
collecting ideas from existing planners and adding features to make the new
planner continual and distributed.

1 Introduction

This paper briefly describes an effort to develop a soccer 3D team named MRL. The
development concludes three main divisions: noise reduction, low-level skills, plan-
ning. Soccer is a dynamic environment in which situations are not completely known
and actions will not always succeed. Automated planners cannot assume entire infor-
mation. Execution of plans is not deterministic. MRL started to develop a specific
planner that is continual and distributed. Its layered architecture has considered inter-
leaved planning, execution, and monitoring, known as continual planning.

Section 2 describes how noise has been filtered using a common method called
DKF, Discrete Kalman Filtering. Two low-level optimizations are described in sec-
tion 3, self-localization and a method for controlling agent's velocity. Section 4 is
about MRL planner. Section 5 concludes the paper and describes future works.

2 Noise Reduction

Soccer agents receive noisy sensory information from Soccer Server. Therefore
agents see objects like ball, flags and players with noise. It is obvious that the sense
could not be reliable enough and agent always carrying out its tasks inaccurately. So
agent has to reduce the noise in order to achieve more reliable and accurate sense. A
common method for this purpose is DKF, Discrete Kalman Filtering. The Kalman

filter estimates a process by using a form of feedback control [1]. This method is
based on two equations, state equation (2.1) and measurement equation (2.2):

 11 −− ++= kkkk wBuAxx (2.1)

 kkk vHxz += (2.2)
Besides there are two update algorithms, time update and measurement update,

which use system's feedback data and update each other recursively. Consequently
this method decreases the estimated error covariance to nearly zero.

As an example, suppose the ball is in distance 10 relative to an agent. Fig. 1 de-
picts what the agent receives (black color) and what it calibrated (magenta color).

Fig. 1. Noise reduction of ball-distance using DKF, black line is the noisy data received from
soccer server and the magenta line is the filtered data.

3 Low-Level Skills

Low-Level Skills are foundations for multi-layer robot control architectures. Without
having reliable basic skills robot will not do anything efficiently. If a soccer robot
could not estimate position of the ball trustfully, its ball handling skills will fail, and it
is clear that a soccer team containing this kind of robots would not be a good team.

Because of the importance of basic computations' accuracy, MRL focused on the
information that agent uses to act properly, including self localization and improving
agent's velocity control.

3.1 Self Localization

Localization is the process of determining the robot's location within its environ-
ment. In soccer, localization means that agents find their local position in the field of
play. MRL agent uses relative information of the eight flags that arranged around the
field of play and applies 'Circle Intersections' [2] as basic estimation of its position.
After applying linear regression on this estimation, agent localizes itself very well.

3.2 Efficient Velocity Control

One of major problems in agent's low-level skills is controlling agent's velocity. A
soccer agent usually needs to go to a target quickly and also reach there with a de-
sired speed. If the desired speed is less than agent's max velocity, agent has to in-
crease and then decrease its speed along the way to the target. On the other hand,
when the desired speed is unlimited agent needs only to increase its speed.

MRL agents use a mechanism to calculate the moments in which they should
change their speed from ascending to descending or vice versa. The mechanism has
two phases: (I) off-line learning that agent learns the length of traveled distance using
particular velocity and power, and (II) on-line calculation that agent explores learned
data to decide moments in which its velocity should be changed in order to arrive at a
target position with a particular ultimate velocity. In (I) in order to reach a target
position as fast as possible it is supposed that agent only uses its maximum power to
change the velocity. (I) generates two look-up tables, one for increasing and another
for decreasing velocity. During (II) agent explores these two tables to determine mo-
ments for changing the velocity.

An illustrative example can clear up this method. Suppose that agent is in start po-
sition (Fig. 2.a) with initial velocity V0. It wants to go to the target position that is in
distance d. In addition, agent has decided to have velocity Vt when it arrives at the
target. Consider d = 3.30, V0 = 0, and the power is 100 (max power). Fig. 2.b to 2.e
shows learned data (blue curves) as well as agent's experiment data (red curves). Fig.
2.b indicates that if Vt is set to 1.6 (1.6 is max velocity of the soccer) agent should
increase its velocity all the time. Fig 2.c shows that if Vt = 1.4 (a little less than max
velocity) agent has to raise its velocity rapidly to 1.4 (and not 1.6) and continue keep-
ing this speed. Fig. 2.d (or 1.e) denotes that agent wants to get to Vt = 1 (or 0.2) so it
should raise its velocity then continue without any acceleration and finally reduce the
velocity. This method guarantee a reliable velocity control that makes agent get to a
desire position as fast as possible.

Fig. 2. red curve is learned data and blue curve is experiment data. a. Agent's velocity at target
is not limited. Agent starts to move with maximum power, reaches to its max speed, and con-
tinues; b. Agent's velocity at target is less than agent's max velocity, and system offers only
increasing velocity up to the ultimate velocity (not to max velocity); c. and d. The velocity is
also less than max velocity and system calculated two moments for velocity changes.

4 Planning

Performance of a multi-agent system depends on how well they co-operate with each
other. MRL have focused on distributed planning in order to improve co-operation
between its agents. A plan in MAS is a sequence of actions which is distributed
among a group of agents. Depending on the environment in which agent will execute

the plan, it needs to think about additional aspects like timing and uncertainty. Soccer
is obviously a very hard and complex problem. According to Russell's classification
of problems [3], soccer could be classified as a partial-observable, uncertain, sequen-
tial, dynamic, continual, and multi-agent environment. Regarding these features, a
soccer agent's planner would be more complex than common planners which used for
a simple robot. Such a planner should provide high-level decisions for agents as well
as allows agent to behave reactively.

After testing some general planners such as Blackbox [4], Graphplan [5],
PRODIGY [6] we have found out that general purpose planners could not work effi-
ciently for some specific purposes like soccer problem. The reason is limitations that
they have for being general purpose. Therefore MRL started to develop a specific
planner by collecting ideas from existing planners and adding features to make the
new planner continual and distributed. Fig. 3 depicts the planner's control flow dia-
gram.

Planner

Interpreter

Strategic Layer

Execution Layer

generate

Plan
extract

Executor

Action
List

revision
plan request

Communication

Monitoring
soccer
domain

conditions,
ac tions,
e ffects

Fig. 3. Control flow diagram of MRL planner architecture

MRL's planner is a continual graph-based planner. This kind of planners generates a
graph of possible sequenced actions for a given goal, and then searches the graph for
the best sequence of actions that ends in a state containing goal state. Depending on
the formalism, the problem of generating plan can be decidable in polynomial, or
even NP-complete. Planning should not be time-consuming because it affects agent's
reactive behavior. In fact, agent should be able to plan and react simultaneously. The
following is a plan that a forward player generated while it possessed the ball:

Current facts

objects: Player(p8);Area(a1);
init: BALLOWNER(p8)
goal: MOVEBALL(a1)

Generated plan:
Give-and-go(p8,p9,a1)

Fig. 3. A sample plan generated by MRL planner.

In this example planner generated a simple plan (give-and-go) in order to achieve

the goal "moving ball to area a1". This plan should be interpreted by the interpreter to
a sequence of actions that should be done by player 8 and player 9.

Agent p8:
1- CommunicatePlan(p9)
1- DirectPass(p9);
2- Go2Point(20,15);
3- PossessBall();

Agent p9:

1- GetOpen2ReceivePass(p8);
2- DiagonalPass(p8);

Then the executor starts to execute it. And monitoring controls the execution and
compares it with the plan. If executing does not support the plan, monitoring send a
revise signal to the planner. Then planner modifies the old plan or generates another
plan depend on the current world model.

Planning could be run as separate computational process, but can also be done by
carefully coding the algorithms so they can be manually interleaved within a single
computational process. MRL selected the single process approach.

5 Conclusions and Future Works

Developing a multi-agent system like robot soccer team needs to consider both delib-
eration and reaction aspects. MRL is improving its performance by using a planner
for providing deliberation as well as using powerful learning methods for reactions.

For the planner we are going to add temporal feature. Then it would be possible to
measure the performance of the execution and also monitoring could be more accu-
rate.

Controlling agent's velocity is base on lookup tables and it is limited to position of
the target and direction of velocities at the start and end of the path. To remove this
limitation the algorithm should be extended and consequently size of the tables would
increase. Afterwards searching would be time consuming and using look-up tables
makes the mechanism to behave discretely. Using Neural Networks could be a solu-
tion for optimizing cost of the search and estimating non-existing entries. MRL is
going to extend the mechanism of agent's velocity control in order to use it without
mentions limitations.

References

1. R. E. Kalman. "A New Approach to Linear Filtering and Prediction Problems", Transaction
of the ASME-Journal of Basic Engineering, pp. 35-45 (1960).

2. M. Reidmiller, A. Merke, M. Nickschas, W. Nowak, and D. Withopf. Brainstormers 2003,
2D Soccer Simulation Team Description. Proceeding of RoboCup 2003 (2003)

3. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach" (Second Edition)
(2003)

4. J. Duchi, J. Connor, and B. Lo, "An Evaluation of Blackbox Graph Planning", Stanford
University, (2005)

5. A. Blum and M. Furst, "Fast planning through planning graph analysis", Artificial Intelli-
gence, 90, 281-- 300, (1997)

6. M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, J. Blythe, "Integrating Planning and
Learning: The PRODIGY Architecture ", Journal of Experimental and Theoretical Artificial
Intelligence, (1995)

