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Abstract. In earlier RoboCup teams, we have made a point of using princi-
pled methods to learn behaviours. The main line of these methods is the use of
information-theoretic and related algorithms to identify the structure of possible
behaviours for an agent. In this endeavour, we strive to move further ahead, using
some further new concepts.
In particular, we will use, in addition to existing information-theoretic methods
described last year, the concept ofempowerment[18, 19] to select desirable di-
rections of activity.

1 Introduction

Our program of research concentrates on creating agent control from first principles. A
particular interest is to avoid having to know the detailed physics of the world they live
in. We thus wish to move away from the standard approach to construct strong RoboCup
agents by creating specific skills and capabilities. Our research program in the last years
has been devoted to develop techniques that allow self-organized emergence of control
for artificial agents in very general settings [13, 14, 15, 16, 17, 18, 19, 25] and in real
robots (AIBOs) [26, 27, 28, 29, 30, 31, 32, 33, 34].

Having been part of the RoboCup endeavour for a long time,learning has been
introduced as early as [39, 40], but also in combination with reinforcement learning
[6, 21]. As we argued in [10], reinforcement learning methods are attractive for learn-
ing approaches because they are highly general, mathematically accessible and well
understood. This generality, however, comes at a price. In large search spaces, the learn-
ing algorithms are slow and their robustness and generalizability is not well controlled.
Dedicated decompositions of the representation of the state space are sometimes per-
formed that deconstruct the task hierarchically into manageable parts [9], and this still
mostly requires manual decomposition. Only recently, approaches begin to emerge that
show promising ways to reduce reinforcement learning complexity without human in-
trospection [11, 12]. Still, a large number of learning steps is required to learn a more
complex task. In addition, convergence problems can arise in continuous domains (as
RoboCup) [41].

In the last teams, beginning with [10], a different approach had been used. It in-
troduced SIVE, which was inspired by many different sources. Its original motivation
stems from the observation that humans are able to attain a much steeper learning per-
formance than computers when faced with a new task. As mentioned in [10], when



facing an autonomous agent team, a human team playing with the OpenZeng inter-
face at the GermanOpen 2001, while being technically and tactically inferior, showed a
rapidly improving performance and thus a much steeper learning curve than any current
available learning system.

This is particularly striking since human accuracy in estimating ball position and
performing actions was nowhere as accurate as that of the autonomous team. This is a
clear indication that the “exhaustive learning” character exhibited by typical automated
learning algorithms is inadequate to obtain the directedness and generalization power
that human learning exhibits. Human learning exhibits extremely fast generalization
and adaptation, “holistic” learning and the capability to combine skills. To achieve this
flexibility is our ultimate goal.

2 Information and Intelligent Agents

We emphasized in the past the importance of information theoretic approaches in un-
derstanding how biological systems achieve their goals. Barlow’s and Linsker’s results
[4, 23] about the self-organization of perception based on principles from information
theory (information maximization) have found a larger number of approaches to study
the problem of information processing in the brain (or of biological systems in general)
using information theory [1, 3, 5, 7, 24, 46]. The limited power of these approaches was
due to the lack of one essential element: these studies concentrated on passive systems,
systems that would take in information as it comes along, but that had no power of
action.

Apart from an early insight by [2], only recent research has begun to include the
influence of agent actions on the information balance of a system under consideration
[43, 44]. In addition It could be recently shown that optimizing information-flows in
the closed perception-action loop of an agent with given embodiment and limited in-
formational resources acts as a self-organization process for information flows; the way
information propagates through the system [15, 17, 25] organizes itself as to represent
“essential” features of the environment. Using this principle, virtually no extra assump-
tions are introduced into the system beyond the natural embodiment of the agent and
the requirement of information flow optimization, something that can be naturally de-
fined (even if not necessarily to compute) for any type of agent. The observation that
the limitation of resources can force (Shannon) information to “crystallize” into mean-
ingful structures that capture essential properties of a system, has found its probably
most striking incarnation in theinformation bottleneck principle[38, 42].

Manifold representation can recover aspects of the environment using [35], but this
is no guarantee for continuity or symmetry that can be exploited. If a system is not com-
pletely lacking structure, than one can, however, always hope to identify informational
structures; for instance one can infer sensomotoric maps from entirely uninterpreted
sensoric input [30, 31, 32, 36] for a sensomotoric system as complex as real AIBO
robot.

Why is information such a useful quantity? One reason is that it is universal — any
exchange of data, no matter whether in artificial or in biological systems, is subjected to
Shannon’s laws. The second is that, in absence of other costs (or if variation keeps other



costs unchanged), biological systems tend to exploit the available “information space”
to its limits [8, 45]. On the one hand, information processing is “convertible” into other
basic biological currencies, e.g. ATP consumption [22], on the other hand, it provides
tools by which information can be treateddirectlyas a quantifiable, limited resource.

Including with the insights of the self-organized structuring of information from
the information bottleneck principle [42] as well as from the information-flow studies
[15, 17], this leads us to the hypothesis that we might be able to gain access to some
of the principles that underlie biological information processing by understanding what
happens in terms of information flows instead of trying to reverse engineer the concrete
biological implementation in detail. This hypothesis that the principle could act as an
approach for developing AI systems that capture some of the spirit of living learning
systems is the main motivation for our overall methodology.

3 Empowerment as Guiding Principle

We wish to further increase our tools in the bottom-up creation of skills. The approach
which we attempt to incorporate into our team learning strategy is the concept ofem-
powerment(introduced in [18, 19]).

One of the central problems of teaching skills to autonomous agents is the construc-
tion of a suitable reward function that will spread over the whole state/action space.
Often, unless heavy human intervention is involved, true autonomous agent scenarios
have only a very sparse reinforcement feedback which takes long time to spread back
over a system. A special problem is also the identification of salient and interesting
features.

The concept of empowerment had been introduced to alleviate that problem. Em-
powerment is basically a measure of how strongly an agent can influence its environ-
ment. It is calculated using information theory (see above). What it achieves is that
it constructs a dense utility function throughout a perception-action space; it thereby
solves the sparsity problem.

In addition, in a number of scenarios we have found that empowerment has the
ability to identify “interesting”, salient points in the state/action landscape. In our 2006
team, we wish to employ empowerment as guiding principle to find interesting states to
train by the agents. This will not just be applied to individual agent skills as ball control
(something for which empowerment promises to be very well suited).

A key issue will be to control empowerment with respect to teammatesand to op-
ponent agents. This way, we can create a collective utility function for the team (it has
to work using the information of the individual agent, though, and thus will only have
a subjective view of the world). Using the empowerment measure will (in conjunction
with applying a minimax principle for the opponent agents) serve us to create as far as
possible a bottom-up strategy for the interaction of the agents. The technique for apply-
ing a minimax principle has already been experimented with in the Lucky Lbeck 2000
team; this time, however, we also have a suitable dense utility function that may help to
improve the quality of the found solutions.

One problem that still has to be solved at this time is the incorporation of explicit
higher level goals. For this, a balance between local empowerment optimization and



global goals will have to be constructed. This is, at the current point, not solved in
a conceptually consistent way, but can, in any case, be achieved by incorporating the
reward for achieving a goal (the ultimate task of the agent, that, however, cannot be
easily seen by the pure empowerment measure which can only identify points of interest
via the agent embodiment) explicitly into the calculation — at this point, it will still
require direct human intervention.
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