
Aria 2006 3D Soccer Simulation Team
Description

Hamidreza Baghi, Mojtaba Solgi, Hamid Izadinia,
Sayyed Mohammad Hossein Sayyed Razizadeh,

Sayyed Mostafa Arefian Khalilabad

Amirkabir University of Technology
P.O. Box 15875-4413, Tehran, Iran

{baghi, solgi, razizadeh, izadinia, arefian}@ce.aut.ac.ir

Abstract. Aria3D is participating in the 3D Simulated Soccer compe-
titions for the 3rd time. In this paper we are going to focus on two major
parts of our work. First we describe the methods and algorithms we have
used in low level skills and environment prediction of our agent in de-
tail. After that an abstract description of our teamworking mechanism,
Scenario-based Teamworking, is mentioned.

1 Introduction

Aria3d Soccer Simulation team is developed by a group of B.S. students of
Amirkabir University of Technology. As a result of our hard effort, the team
awarded first place in both Robocup 2004 and Robocup 2005 3D Soccer compe-
titions[1].

We designed a layered architecture for the agent. The agent consists of dif-
ferent parts in different layers. There are three main layers in Aria agent: Com-
munication layer, low-level skills, decision. in low-level skills layer we developed
a number of basic skills like Goto Point Skill and Kick Skill. On top of low-level
skills we developed high-level skills like Pass which are used in decision making.
Each high-level skill also decides on choosing best possible action to do. Decision
layer has a planning part that activates a scenario when applicable.

In the following sections we are going to describe three parts of Aria agent.
In section 2 we describe the way our agent predicts its position and velocity.
Prediction is mainly used in developing low-level skills. In section 3 we describe
Goto Point Skill which is one of the main low-level skills. Finally in section 4
we describe the scenario-based decision making which is a part of the decision
layer.

2 Prediction of Agent Position and Velocity

To implement different low level skills we need prediction of agent movement and
agent velocity. Accurate prediction of instantaneous velocity of agent in future
cycles is required for implementing GotoPointSkill. Similarly, a prediction of

agent movement is needed for eliminating the effect of noise of localization on
computing the velocity of ball in current and future cycles. A velocity for agent
can be calculated using vision perception which is an average speed for agent
during 20 cycles. This average speed has 20 cycles delay considering the 10-cycle
delay of sensors and 10-cycle delay of effectors which is simulated by SPADES
[2]. In addition, prediction of agent position is needed to develop an efficient
Interception Skill.

We acquired an equation for computing the Final Position (~Xf) and Final
Velocity (~Vf) of agent when it moves from initial position ~Xo with initial velocity
~V0 and Drive Force ~Fd for t cycles. The abstract form of these formulas are shown
in (1) and (2).

~Xf = f1(~X0, ~V0, ~Fd, t) (1)

~Vf = f2(~V0, ~Fd, t) (2)

In the environment of 3D Soccer Simulator the only force that opposites
the agent’s movement is linear drag. This force is proportional to instantaneous
velocity of agent. This is shown in (3).

~Fk(t) = k′~V (t) (3)

Replacing ~Fk with m×~ak we derive (4) which can simply be written as (5).

~ak(t) =
k′

m
~V (t) (4)

~ak(t) = k~V (t) (5)

The drive force (~Fd) is also applied to agent. This force results in an acceler-
ation which is proportional to the drive force (~ad = b× ~Fd). We add ~ad to sides
of (5) which results in (6). We write the (6) in differential equation form which
is shown in (7).

~ak(t) + ~ak = ~V (t) + ~ad (6)

d~v

dt
(t) = k~V (t) + ~ad (7)

Solving (7) we obtain (8) which is an equation to compute the final velocity
of agent after t time units with initial velocity of ~V◦. Equation (9) is obtained
by computing the integral of (8). Using this function the final position of agent
after t time units can be computed.

~Vf = f2(~V◦, ~Fd, t) =
ekt(k~V◦ + ~ad)

k
(8)

~Xf = f1(~X◦, ~V◦, ~Fd, t) =
1
k2

(ekt− 1)(~ad + k~V◦)− (
t× ~ad

k
) + ~X◦ (9)

In (8) and (9) variable ~ad is linearly dependent on ~Fd with coefficient b

(~ad = b ~Fd).
We need coefficients k and b to complete the equations. To find these coeffi-

cients we put values in equations (8) and (9) for which the result is known. For
example, with t = +∞ in (8) and applying maximum drive force (~Fd = 100)
and considering the fact that the k coefficient is negative1, we have (10).

b = −
~Vmax

100
× k (10)

To acquire magnitude of maximum velocity of agent, maximum drive force
is applied to the agent in one direction until the agent reaches a constant speed.
Computing the average velocity of agent in this situation, we have a good ap-
proximation for |Vmax|. Now we eliminate b coefficient from the equations. To
compute k we can follow two approaches which are described below. We use the
second method to obtain an initial approximation for k and then we use the first
method to increase the accuracy of obtained value.

1. We start with a known state (e.g. V◦ = 0 or |V◦| = 0) and apply a specific
drive force to agent. Then we measure the distance the agent traveled. Using
9 we compute the coefficient k.

2. We draw a graph of agent positions in different time stamps. A sample graph
for agent movement is illustrated in Fig.1. We use mathematical tools (like
MATLAB) to find coefficients that fit the 9 on the graph.

3 Goto Point Skill

GotoPointSkill is an important skill and needed in most other skills and high-
level behavior. The goal is to generate a series of drive actions to reach a target
point with a specific velocity efficiently. The GotoPointSkill uses current velocity
and position of agent and prediction functions described in previous section to
generate the sequence of drive actions.

For this purpose we assume that the agent starts moving with drive force
~F1 which has maximum magnitude for duration of t1 time units and then apply
drive force ~F2 which is also maximum in magnitude for t2 time units to reduce
its velocity. The ~F1 , ~F2 , t1 and t2 must be computed so that the agent reaches
the target with the specified velocity. These variables should satisfy equations
(8) and (9).

~Vf = f2(~V1, ~F2, t2) = f2(f2(~V◦, ~F1, t1), ~F2, t2) (11)

1 When t approaches infinity the velocity approaches a constant value not infinity

0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5
x vs. t
Fit

Fig. 1. Position-Time graph for agent and a fitting function for it

~Xf = f1(~X1, ~V1, ~F2, t2) = f1(f1(~X◦, ~V◦, ~F1, t1), f2(~V◦, ~F1, t1), ~F2, t2) (12)

|~F1| = |~F2| = 100 (13)

Having equations (11) , (12) and (13) we compute ~F1 , ~F2 , t1 and t2. Since
first two equations don’t have explicit reverse functions we solve the equation
by using numeric methods.

4 Scenario-based Teamworking

In Aria2005 team we have developed a Scenario-based Teamworking (SBT) sys-
tem for high level decision making. We get the main idea from [3] and did some
adaptations to port these ideas to 3D environment. Using SBT agents can per-
form pre-designed or learned plans (scenarios) in cooperation with each other. It
is a multi-state procedure and agents should be able to keep track of the scenario
steps (states).

We used SBT as an alternative to our normal decision making. A general
view of decision algorithm is shown in Fig.2.

An important consideration for applying SBT to 3D Soccer Agent is that
there is no communication between agents in 3D environment. In such an en-
vironment, agents cannot inform each other about their decisions; As a result,

If there is an active scenario in progress Then:

If STOP conditions of the active scenario is valid Then

Stop the scenario and go to the normal agent decision making

Else

Each agent checks if it is involved in the activated scenario or not.

If so, it determines in which step the scenario

is and plays its role in that step.

Else

For each learned or saved scenario

If START conditions of scenario is valid Then

Add the scenario to the potentially

selectable scenarios list

If there is no selectable scenario Then:

Go to the normal agent decision making procedures

Else

Select the best scenario from potentially selectable scenarios

considering the point each scenario has due to the various

factors of the current situation.

Fig. 2. General view of decision algorithm

they may loose coordination when they are involved in team working tasks like
scenario-based decision making. In order to implement the agent coordination
in this environment, all the agents must have a same set of identical scenario
patterns. Also we should develop a mechanism for scenario triggering and step
evolving so that all the agents detect the start of the scenario patterns simulta-
neously and have same evaluation of the step that the active scenario is currently
at.

According to our experience, Scenario-based Teamworking is an effective
method for high level decision making and agent coordination in the communication-
less environment of 3D Soccer Server [4]. We used this method for some pre-
designed patterns in our 2005 team. One successfully implemented pattern is
Counter-Attack Scenario which is triggered in situations when the number of
opponent defenders is low and there is a high chance of scoring.

5 Conclusion

In this paper, we described a few aspects of our agent. Because the 3D Soccer
Simulation is at its early stages of development, the main focus of teams is on
low-level skills. In Aria we have tried to develop a set of accurate low-level skills
which ease the implementation of complex decision making layer. We have also
spent a lot of effort on implementing the 2D ideas of decision making in 3D.
This resulted in scenario-based decision making layer. One of our future plans
is to apply machine learning methods to SBT.

References

1. Hesam Montazeri, Ahmad Nickabadi, Sayyed Ali Rokni Dezfouli,Mojtaba Solgi,
Hamid Reza Baghi, Omid Mola, Sajjad Moradi. Aria 2005 3D Soccer Simulation
Team Description. Robocup 2005 Championship

2. Patrick Riley. SPADES System for Parallel Agent Discrete Event Simulation User’s
Guide and Refrence Manual. 2003

3. Lev Stankevich, Alexei Kritchoun, Anton Ivanov, Sergey Serebryakov. Zenit-
NewERA Team Description. Proceeding of Robocup 2004

4. Oliver Obst and Markus Rollmann. SPARK – A Generic Simulator for Physical
Multiagent Simulations. In Gabriela Lindemann, Jörg Denzinger, Ingo J. Timm,
and Rainer Unland, editors, Multiagent System Technologies – Proceedings of the
MATES 2004 , pp. 243-257, Lecture Notes in Artificial Intelligence 3187, Springer,
September 2004.

