
AllemaniACs3D Team Description

Philipp Vorst, Alexander Ferrein, and Gerhard Lakemeyer

Knowledge-Based Systems Group
RWTH Aachen,

Aachen, Germany
{vorst, ferrein, gerhard}@i5.informatik.rwth-aachen.de

Abstract. For more than three years our AllemaniACs RoboCup team
has participated in the Middle-Size league and used the 2D soccer simu-
lation as a test environment for our deliberative approach to team coor-
dination. In order to tackle the trade-off between reactivity and planning
intelligent courses of actions, the DR-Architecture was developed. This
year we realize our concepts in the RoboCup 3D soccer simulation –
a league which combines realistic features known from the Middle-Size
league and coordination challenges arising in the 2D simulation. In this
paper we sketch our approach, present the agent architecture, and show
first results.

1 Introduction

In robotic soccer [1] one of the main challenges is the intelligent decision making
of the soccer agents or robots. While with real hardware the focus also lies
on issues like sensors or actuators, building stable hardware, designing robust
highly integrated embedded systems, one can abstract from these issues in the
Simulation league. This means that the designer is able to concentrate on the
decision making of the agents. This does, though, not mean that problems like
localization and perception do not have to be solved.

For the decision making of the soccer agent we proposed to follow a hybrid
approach trying to combine deliberation with reactive behavior [2]. We believe
that we need some form of deliberation or planning in order to be able to yield
“intelligent” decisions. While it is advantageous to be able to make plans for
future courses of actions it comes with the disadvantage of being computationally
expensive. The fast-paced soccer does not allow to think too long for the next
action to be executed. This is the reason why deliberation alone might not be
successful in the soccer domain. Thus, we integrate a reactive component in
the system architecture which is able to provide a next action to be performed
immediately.

For deliberation we use the logic-based agent programming language Ready-
log [3] which is based on Golog [4]. It combines explicit agent programming with
planning. For the specification of the soccer agents we want to adapt soccer
moves from human soccer theory as described in [5, 6]. For reactive behavior we
want (among other things) to apply our work described in [7] where we success-
fully applied decision tree learning for the 2D simulation environment.



So, the aim of the AllemaniACs3D soccer team are two-fold. First, we want
to use our experience from the Middle-size league wrt. to tasks like localization
and sensor fusion and our previous work on decision making in the robotic soccer
context. Second, we want to gather new experience how our approach scales in
a more complex, more realistic simulated soccer environments with 11 players.
In this paper we describe our approach in some detail and present the current
state of our work for the 3D Simulation league.

In the following section we describe our software architecture in greater detail
before we turn to the world model of the 3D soccer agent in Section 3. In Section 4
we describe some of our basis skills. We give an outlook of the future work in
Section 5.

2 Agent Architecture

While deliberation has many advantages for the decision making of an agent, it
has the disadvantage of being slow compared to generating actions in a reactive
fashion. In [2] we proposed a hybrid architecture which allows the combination
of deliberation with reactivity. Here, we give a brief overview of our architecture.
For more information we refer to [2].

Figure 1 shows the DR-Architecture. Based on the SPADES agent library [8],
the CommServer Interface is directly connected to the simulation and is respon-
sible for the coding and decoding of messages. Parsed data is used to update the
World Model, which provides a representation of the world as well as strategic
information. From the sensory input we build our world model. We discuss the
world model in detail in the next section.

The decision module in the DR-Architecture is divided into three sub-modules.
To be able to settle an action immediately the Reactive Component computes
the next action to be executed based on the current game situation. In [7] we
propose to formulate the reactive action choice as a classification problem and
apply Quinlan’s C4.5 [9] to learn the assignment between world situations and
actions. The reported results are from the Simulation league. In the future we will
apply these results to the Middle-size league. The main problem lies in the rel-
atively many examples needed in order to learn an appropriate situation-action
mapping.

The Deliberative Component calculates a plan projecting into the future
choosing among the possible action sequences. The choice for the best action
sequence is supported by an optimization theory. We apply decision-theoretic
planning to calculate an optimal policy in the Readylog framework. We refer to
[3, 10] for more details about the language Readylog.

Having an immediate action and a plan concurring for executing one needs
to decide which of both to use. Currently, we are developing the Action Selection

module based on a Reinforcement Learning approach. The idea is that the action
selection module uses its observation which of the both components yields better
results in terms of a global reward function in the respective world situation. First
experiments in the 2D Simulation league are promising.



PSfrag replacements

Communication Server Interface

Simulation

Skills

Decision Module

Wrapped Skills

Simple Skills

Complex Skills

World Model

World State

Situation Classification

Group-/Team-Level Tactics

Action Selection

Reactive Component

Deliberative Component

Fig. 1: DR-Architecture adapted to RoboCup 3D soccer simulation

3 World Model

The world model is layered according to the level of abstraction of the provided
information. Each layer adds a compact portion of functionality based on the
information of inherited layers.

The world state comprises a static model of the environment and current po-
sitions/ velocities of the ball and players. World model updates are only applied
to this layer. Apart from the data which is required to estimate the velocities of
dynamic elements of the playing field, this layer is memoryless.

World state is first of all subject to world model updates and filtering. For
self-localization we employ a combination of dead reckoning and Kalman filter-
based fusion of pose estimates (cf. [11] for the basic filtering technique). This
method yields an average error of 0.055 meters in our experiments and outper-
formes the nearest-landmark heuristic.

The attributes which are provided by world state are available both in a
quantitative and a qualitative fashion [12]. The ball position, for example, is
characterized both by its numerical coordinates (x, y, z) and by a qualitative
description such as (zone back, side left, lifted). Thereby this world model
layer already prepares to be effectively accessible by the agent designer, who
may want to specify the agent’s behavior based on expressive descriptions of the
world state.



Fig. 2: World model visualization

The task of Situation Classification is to assess the current world state and
to derive information on a higher level of abstraction. Here, for instance, the
player who can intercept fastest and good pass partners are determined. With
respect to tactical assessments, for instance, Situation Classification furthermore
determines whether the current setting is offensive or defensive. Such an attribute
is not only required for action selection, but also for the next higher level of the
world model.

Group- and Team-Level Tactics is primarily concerned with the assignment
of roles to players, the direct assignment of opponent players to be marked by
a teammate, and the choice of an adequate situation-based formation. For the
assignment of roles, the use of the so-called Hungarian method (e.g. see [13]) has
proven to be adequate. Although the choice of simple cost functions such as the
distance of a teammate from a formation-based strategic position can lead to
unintended role switches in few cases, we consider the method to be preferable.
It is more stable than greedy assignments, provably optimal with respect to the
defined cost function, and computationally negligible.

4 Skills

The basic simulation commands drive, kick, beam, and say are wrapped as
atomic skills within the Skills module (see Figure 1). Neither do they have a
state of their own nor do they query any information from the world model in
this kind of representation. Contrary to this nature, simple skills are those which
can assume several internal states and which take world model information as
additional input for their performance. They make use of exactly one of the
atomic abilities. Examples of simple skills are move to (although embodying



motion control and collision avoidance) or block position. Complex skills such
as dribble to finally denote those ones which are composite of more than one
lower-level abilities.

We decided to first implement them based on geometric models. In a later
phase, we may replace them by machine-learned behaviors successively, exploring
learning methods, which have successfully been employed by other teams. The
advantage of our model-based approach, however, is that we can reuse the models
for our high-level control.

Fig. 3: Evaluation and training environment

In order to evaluate skills and world model data, we have established an
experimental environment integrating various kinds of training modules. Each
module comes up with an experiment setup and performance procedure, unified
logging facilities, and live tracking of experimental results. This permits sys-
tematic analyses, debugging, and optimization of the agent’s behavior. Figure 3
shows a screen shot of a recent evaluation session for the dribble skill, compris-
ing the simulation window, a session control widget, and the data plot visualizing
the agent trace and tracked velocities. That session, for instance, showed that
the agent quite precisely followed the target direction, but which also indicated
that the lower-bound velocity during dribbling had to be improved.

5 Current Work and Outlook

At the moment we are concerned with the low-level control of the 3D soccer
agents, refining the skills and improving the world modeling. We especially focus
on the extensibility of the low-level system. Currently, the environment data from



3D soccer server are very accurate and problems with noisy data are not severe.
This is the reason why we yield good localization results with the Kalman filter.
In the future, the simulation will become more realistic and other methods like
Monte Carlo localization might be needed. At that point our experience with
robotics might pay off.

Our decision making layer consists of a hand-coded reactive agent at the
moment. Clearly, this is only the starting point in this project. In the near future
we want to implement the deliberative component and the action selection as
part of the DR-Architecture. In this context we are going to continue our work
on adapting soccer theory in the RoboCup context (cf. [5, 6]). The 3D league is
of special interest for the work on soccer theory as it is the first real 3D league.
In the Middle-size league, for example, the representation of pass reachability
(i.e. when a pass to a player can be played) in 2D is sufficient at the moment.
More complex soccer moves can be undertaken and we expect interesting results
about the scalability of the planning approach used in the agent programming
framework Readylog.

References

1. http://www.robocup.org (2006)
2. Dylla, F., Ferrein, A., Lakemeyer, G.: Acting and Deliberating Using Golog in

Robotic Soccer - A Hybrid Approach. In: 3rd International Cognitive Robotics
Workshop (CogRob 2002), AAAI Press (2002)

3. Ferrein, A., Fritz, C., Lakemeyer, G.: On-line decision-theoretic golog for unpre-
dictable domains. In: Proc. of 27th German Conference on AI. (2004)

4. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming 31

(1997) 59–83
5. Dylla, F., Ferrein, A., Lakemeyer, G., Murray, J., Obst, O., Röfer, T., Stolzenburg,

F., Visser, U., Wagner, T.: Towards a league-independent qualitative soccer theory
for robocup. In: RoboCup 2004: Robot World Cup VIII, Springer (2005)

6. Schiffer, S., Ferrein, A.: A qualitative world model for soccer agents. submitted
(2006)

7. Konur, S., Ferrein, A., Lakemeyer, G.: Learning decision trees for action selection
in soccer agents. In: Proc. 18th BNAIC. (2004)

8. Riley, P.: User’s Guide and Reference Manual for the Agent Library provided as
part of SPADES. (2003)

9. Quinlan, J.: C4.5 Programs for Machine Learning. Morgan Kauffmann (1993)
10. Ferrein, A., Fritz, C., Lakemeyer, G.: Using golog for deliberation and team coor-

dination in robotic soccer. KI (2005)
11. Kalman, R.: A New Approach to Linear Filtering and Prediction Problems. Journal

of Basic Engineering (1960) 35–45
12. Schiffer, S.: ReadyWorld – A Qualitative World Model for Autonomous Soccer

Agents in the ReadyLog Framework. Diploma Thesis, Knowledge-Based Systems
Group, RWTH Aachen, Germany (2005)

13. Gerkey, B., Matari, M.: On role allocation in RoboCup. In: RoboCup 2003: Robot
Soccer World Cup VII. Volume 3020 of LNCS. Springer-Verlag (2004)


