
RoboLog Koblenz 3D – Team Description for 3D
Development Competition 2005

Heni Ben Amor, Joschka Boedecker, Anita Maas, Jan Murray, Oliver Obst,
Achim Rettinger, Christoph Ringelstein, and Markus Rollmann

Universiẗat Koblenz-Landau, AI Research Group, D-56070 Koblenz
{amor,jboedeck,amaas,murray,fruit,achim,cringel,rollmark}@uni-koblenz.de

Abstract. This is a description of the work by members of the team RoboLog3D
for the 3D Development Contest at RoboCup 2005 in Osaka. Our main contribu-
tions are a powerful scene description language, new robot models, more FIFA
rule implementations, and an offline trainer that facilitates experiments and data
collection in the new simulator environment. Many of the implementations use
theZeitgeistframework that comes with the 3D simulator, or use its flexible plug-
in mechanism.

1 Introduction

The RoboCup 2005 3D Development Competition is an attempt to speed up the devel-
opment of the current simulation environment by encouraging members of the com-
munity to present implementations of improvements, and add missing functionality to
it. In this description, we give an overview of our contributions for this competition.
Parts of it are already implemented at the time of this writing, others are still under
development.

As was outlined in the rules for this competition, various topics can be thought of
that would improve on or add to the functionality of the current simulator. Our team
worked on several of them in parallel, using the flexibleZeitgeist[2, 3] plug-in system
of the 3D server in the implementation process.

2 Scene Description Language

In [4], Obst and Rollmann presented a powerful Scene Description Language called
RubySceneGraph. It maps the scene graph structure of a scene for the simulator to the
nesting of Lisp-like expressions. The importer for the scene description files relies on
the Zeitgeist class factory services to create an object of the requested type. A node
expression can be parameterized with function calls in order to access properties of a
scene node in the scene graph. A function call expressed as S-expression is realized
using the Ruby script function exported from the corresponding C++ class. Further
details can be found in [1].



3 New Robot Models

Using the scene description language described above, we implemented two different
kinds of robot models for the simulator. The first one is a small car with two front
wheels with active motors and a back wheel in the rear. It has a vision perceptor and
a kick effector to affect the ball. This robot model is included in the current 3D server
implementation. It is illustrated in figure 1

Fig. 1.The small car robot model as included in the current simulator

Furthermore, we are working on implementing a model for a HOAP-2 robot from
Fujitsu. This is an attempt to prepare the grounds for future development towards hu-
manoid simulation in the 3D Simulation League.

4 Rule Implementation

We will implement the FIFA offside rule for the simulation. If time permits, we will
also try to implement a special goalie agent which is allowed to catch the ball during
the match.

5 Offline Trainer

We developed a special monitor client that can be used to send commands to the server
which affect the properties of the ball or the agents on the field as described in [1]. It
is possible to affect the position and velocity of these objects, but also internal player
parameters like the battery state. The trainer can be used in addition to a regular monitor.
It does not visualize the current simulation, but it receives all the information describing
the scene at every simulation step. Two modes are available for the trainer, namely
interactive and automated mode.

In interactive mode, commands can be sent to the server from the command line
using S-Expressions. As an example, if the position of agent number 1 of the team
playing on the left side is to be changed the point(0.0,0.0,0.0), the corresponding
S-Expression would be:

(agent (team L)(unum 1)(pos 0.0 0.0 0.0))



In automated mode, the program is provided with a file ofscenarios, i.e., initial
configurations for player and/or ball positions and velocities. Furthermore, it will use
evaluation functions, to determine the termination condition for a scenario. The trainer
will reset the current scenario once the termination condition is met and record the
results for further evaluation. Every scenario is repeated a specified number of times
before the next scenario is used. This is done for all the scenarios in the given file.
Using the automated mode, the trainer can be used to easily setup experiments and
collect data for evaluation purposes.

6 Monitor GUI

A further improvement we plan to make to the server is to implement a monitor with
additional functionality. First, it would be desirable to have access to the scene graph of
the simulation. This would, for instance, facilitate the construction of new robot models
for the simulation. Second, the trainer program described above could be intregrated
into the monitor and could also benefit from the easier usability provided by the graph-
ical user interface.

References

1. Robocup soccer server 3d manual. available at http://www.sf.net/projects/sserver/, 2004.
2. Marco K̈ogler. Simulation and Visualization of Agents in 3d Environments. Technical report,

Universiẗat Koblenz-Landau, 2003.
3. Marco K̈ogler and Oliver Obst. Simulation league: The next generation. In Daniel Polani,

Andrea Bonarini, Brett Browning, and Kazuo Yoshida, editors,Proceedings of the RoboCup
Symposium 2003, July 2003. An LNAI version of the proceedings will appear later.

4. Oliver Obst and Markus Rollmann. SPARK – A Generic Simulator for Physical Multiagent
Simulations. In Gabriela Lindemann, Jörg Denzinger, Ingo J. Timm, and Rainer Unland,
editors,Multiagent System Technologies – Proceedings of the MATES 2004, volume 3187 of
Lecture Notes in Artificial Intelligence, pages 243–257. Springer, September 2004.


