
Team Description

Mainz Rolling Brains 2005

Felix Flentge, Christoph Schneider, Tobias Jung, Sascha Metz, Robert Deusser

Department of Computer Science
Johannes Gutenberg-University Mainz

D-55099 Mainz, Germany

1 Introduction

This year we will introduce a whole new decision layer design based on gen-
eral principles for coordinated multiagent decision making. In last year’s Mainz
Rolling Brains 3D agent [1] we used the same agent design as in our 2D agent
[2–4]. On the decision layer we had several modules for different tasks as passing
or dribbling. These modules rated the usefulness of their particular actions de-
pending on the current situation. Then the module with the highest rating was
called to execute its action.

We identified two main problems with this approach: First, the coordination
between these modules turned out to be quite difficult. To obtain a different
agent behavior, changes in several modules were necessary. Also, it was not very
clear which module is used in which situation. Second, the switch from 2D to 3D
simulation means a considerable increase in the complexity of the agent control.
In particular, the handling of the ball got a lot more difficult than before and so
now an additional couple of steps is necessary to accomplish the basic tasks as
passing or dribbling. This has far reaching consequences. For example, in 2D it
was sufficient to think about the pass partner when the agent was in the position
to kick the ball because it could kick in every direction quickly. In 3D the agent
has to choose its pass partner many simulation cycles before it reaches the ball
because it can only kick in the direction from the agent towards the ball. So, in
order to play a pass towards a teammate, it has to approach the ball in a certain
way. While approaching the ball, the pass partner may also change its position
which would make further adaptations necessary.

Our answer to these problems is to introduce new methods for making de-
cisions and executing actions. The basic idea is to use team actions which are
valid for the whole team and facilitate the coordination of the agents. Based on
these team actions we will have a clear structure for choosing the appropriate
individual actions using explicit goal functions which rate the usefulness of the
outcomes of the team actions. This general approach to coordinated multiagent
decision making is described in the next section. In section 3 we will give a
short overview of the overall agent design and give some hints how the general
approach is realized in the decision layer. Section 4 deals with the learning of
a simple skill: a simulated two-wheeled robot learns to approach a moving ball



in order to kick it towards a given target. We conclude with section 5 where we
sum up the current status and describe our plans for the future.

2 Coordinated Multiagent Decision Making

We paid special attention to the problem of how to achieve a coordinated team
behavior in the absence of explicit communication. The basic idea of our ap-
proach is to choose some team action based on a clearly structured situation
evaluation first and to deduce the appropriate individual actions after that. In
the following paragraphs we will first describe the different types of actions and
types of situations (i.e. state descriptions) we use. Then we show how we arrive
at the individual action to be executed by the agent to realize specific goals.

2.1 Actions

In order to achieve a coordinated team behavior, we introduce team actions aT

which are chosen from a small set of predefined team actions AT . Each team
action aT consists of ten individual actions aP

∈ AP , i.e. one for each player
except the goalie. For example, one team action could be “pass from player 5 to
player 7”. It would consist of the following individual actions:

– player 5: kick the ball towards player 7
– player 7: prepare to receive the ball from player 5
– every other player: move to an appropriate position

The individual actions are invoked by calling the agent’s behavioral skills.
The respective skill is called every time step to realize the action using a least
commitment strategy [5], i.e. taking the latest information into account.

2.2 Situations

Ideally, at each time step all players in the team should participate in the same
team action and follow the inferred individual actions to realize this team action.
To increase the probability that all agents arrive at the same team action, we use
a clearly structured and systematic decision process. Therefore, we differentiate
between three different kinds of situation descriptions:

– The world situation sW is a complete state description of the full world
(estimated by the world model), i.e. a large vector consisting of positions
and velocities of all players and the ball.

– The tactical situation sT
∈ ST describes the situation of the whole team

on an abstract level. Examples are: “ball possession and ball in front of the
opponent’s goal” or “not in ball possession and ball somewhere in central
midfield”. Thus tactical situations are from a finite (and very small) set. A
hand-coded decision tree classifies world situations into tactical situations
(see Section 3).

– The resulting situation sR is obtained by simulating the effects of team
actions. It contains all necessary information that allow an evaluation by
means of goal functions (see next paragraph).



2.3 Goal Functions

To evaluate team actions we introduce goal functions gi, i = 1, . . . , Ng. A goal
function returns a value between 0 and 1 which describes the degree of goal
realization in a certain resulting situation sR. For example, goal functions may
evaluate the distance between the ball and the opponent’s goal, the number
of possible pass partners or the number of players in certain areas. Thus goal
functions correspond to “features” in the sense of usual position evaluations.
To obtain the value of a certain state we just compute the weighted sum of its
individual features. The notable difference between goal functions and features is
that goal functions are not defined uniformly on the domain of world situations
but operate on the level of the resulting situations.

2.4 Action Selection

The heart of our action selection algorithm is a function that simulates the
effects of a team action aT on the current situation sW . This function returns
the resulting situation sR(aT , sW ) and a value p(aT , sW ) between 0 and 1 that
could be interpreted as the probability of applying the team action successfully1.
We can calculate the utility u(aT ) of a team action aT by

u
(

aT
)

= p
(

aT , sW
)

Ng
∑

i=1

wi,sT gi

(

sR
(

aT , sW
))

(1)

and choose the team action aT with the highest utility. The weights wi,sT depend
on the tactical situation sT and the specific goal function gi and describe the
importance of the specific goal in the current tactical situation. For example, if
the ball is near the opponent’s goal, it may not be important to cover opponents,
but to shoot towards the goal.

For action selection we first determine the tactical situation sT and the appli-
cable team actions aT . These are evaluated using equation (1). To avoid changing
team actions too often, there should also be a goal function for maintaining the
current team action (e.g. one that rewards the old team action with 1). Finally,
we deduce the individual action aP from the chosen team action.

3 Architecture

Our agent is split into three layers (see Figure 1): the technical layer which han-
dles the communication with the server, the transformation layer which provides
the agent with a world model and simple skills, and the exchangeable decision
layer which chooses the agent’s actions. Last year the decision layer contained
the same modular concept (c.f. [2], [3]) which we were already using in the 2D
competition. This year the decision layer is completely rewritten from the scratch
and implements the principles described above.

1 A very natural enhancement of this principle would be to have many possible result-
ing situations sR

i (aT , sW ) with corresponding values pi(a
T , sW ).



Decision Layer

Transformation Layer

Technical Layer
e.g. server communication

World Model Skills

Tactical Situation Executor

Individual Action

Team ActionTeam ActionGoal Function
Team ActionTeam ActionResulting Situation

Evaluator

Team ActionTeam ActionTeam Action

generate

simulate select

derive

execute

Fig. 1. Architecture of the MRB agent.

As the simulation kernel is based on SPADES, we use the SPADES agent
library from P. Riley [6] to handle the communication with the server. We use
the same communication scheme which was used by our 2D agent, i.e. the agent
waits for a message from the server and updates its world model according to
it. Then the player selects an action based on the new information, sends it to
the server, and starts waiting for a new message from the simulator.

Our world model, which is part of the second layer, is still quite simple.
It stores information about all world objects the agent has seen. Therefore,
it is updated every time the player gets new sensor information. Using this
information the word model calculates the agent’s position with a “weighted
flag” algorithm [3]. To reduce the error on the position, the velocity of the player
and its old position is also considered. The world model also tries to calculate
the velocity of the ball by simulating it forward from the last time it was kicked.
As we know the agent’s position quite well, we will concentrate on improving
the knowledge of the velocities of the ball and the player.

Another part of the second layer are our basic skills. These are an abstraction
and extension of the commands provided by the server, as they contain routines
for driving to a position or kicking the ball into a specified direction. So far,
these routines are coded by hand but we plan to learn some of these skills as
described in the next section.



The decision layer implements the concept of coordinated multiagent decision
making as described in section 2. We determine the tactical situation based
on the information in the world model. Depending on this tactical situation a
number of candidate team actions are generated. These are evaluated using the
evaluator which simulates the effects of the team actions and rates them using
the goal functions. The team action with the highest rating is selected. Since the
decision process is geared towards coordinated decision making, ideally all agents
will arrive at the same team action. The agent’s individual action is then derived
and passed to the executor which is responsible for performing the respective
action using the agent’s skills.

4 Learning Simple Skills

We want to apply learning methods to acquire some of the basic skills. Since we
expect that two-wheeled robots are to be introduced in the Simulation League
very soon, we chose the problem to intercept a moving ball with a simulated
two-wheeled robot as a first testbed. The robot is controlled by setting the
velocities of its wheels. The ball should be approached in such a way that it could
be kicked towards a given target. Unfortunately, simulated two-wheeled robots
were not available in the Simulation League at the time of our experiments,
so we had to create our own simulation environment. We tried to choose all
parameters meaningful with respect to the Simulation League, but we did not
consider collisions or acceleration of the robot. Figure 2 a) shows the problem
to be solved. In order to kick the ball, the distance dB between the robot and
the ball has to be smaller than 0.07 m and the angle αB has to be smaller than
22.5◦. Since the ball is always kicked in the direction from the robot towards the
ball, the angle aT between this direction and the desired kick direction has to
be sufficiently small in order to reach the target.

To solve this problem we use a REINFORCE algorithm [7] in combination
with an extended Growing Neural Gas [8] in an actor-critic architecture [9].
The actions we learn are the speed differences which should be applied to the
wheels, i.e. one of the wheels is set to the maximum speed and the other one
according to this difference. The REINFORCE algorithm is used to learn the
situation dependent mean µ(x) and standard deviation σ(x) of a normal distri-
bution N(µ(x), σ(x)) from which the real-valued actions are drawn. To approx-
imate the parameters µ(x) and σ(x) we use the extended Growing Neural Gas
in a way similar to Radial Basis Function Networks. Figure 2 b) shows some of
the learned trajectories. Details can be found in the accompanying RoboCup-
Symposium paper which deals exclusively with this learning problem [10]. We
are going to apply this learning method to the “real” Simulation League as soon
as possible.



PSfrag replacements

target

ball

robot

dBαB

αT

a)

PSfrag replacements

target

ball

robot

b)

Fig. 2. a) Sketch of the problem to be solved with the relevant distance and angles
and a possible solution trajectory. b) Four sample trajectories of the learned approach
ball behavior. The robot is the bigger empty circle, the ball is the smaller empty circle
and the target is the filled circle at the top. The ball moves in one of the four main
directions. The objects were drawn every 100 milliseconds. The straight lines show the
direction the ball is kicked in at the end of each episode (the ball moving towards the
robot can hardly be seen because it is reached significantly faster than all other balls).

5 Conclusion

We presented a general approach for coordinated multiagent decision making. We
currently work on integrating this method in the agent for this year’s RoboCup.
We also reported our experiments about learning to intercept a moving ball in
order to kick it towards a given target. We want to apply the proposed learning
algorithm in the Simulation League for learning some of the skills. We also plan
to do similar experiments on a midsize-robot.

References

1. Arnold, A., Flentge, F., Schneider, C.: Mainz Rolling Brains 2004 - 3D. In:
RoboCup 2004 Symposium papers and team description papers (CD-ROM). (2004)

2. Schappel, B., Schulz, F.: Mainz Rolling Brains 2000. In: RoboCup 2000: Robot
Soccer. World Cup IV. (2001)

3. Arnold, A., Flentge, F., Schneider, C., Schwandtner, G., Uthmann, T., Wache,
M.: Team description. Mainz Rolling Brains 2001. In: RoboCup-01. Robot Soccer
World Cup V. (2002)

4. Arnold, A., Flentge, F.: Mainz Rolling Brains 2004 - 2D. In: RoboCup 2004
Symposium papers and team description papers (CD-ROM). (2004)

5. Burkhard, H., Bach, J., Berger, R., Brunswieck, B., Gollin, M.: Mental models
for robot control. In: Advances in Plan-Based Control of Robotic Agents. Volume
2466 of Lecture Notes in Computer Science., Springer (2002)



6. Riley, P.and Riley, G.: SPADES – a distributed agent simulation environment with
software-in-the-loop execution. In: Winter Simulation Conference Proceedings.
(2003) 817–825

7. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8 (1992) 229–256

8. Fritzke, B.: A growing neural gas network learns topologies. In Tesauro, G.,
Touretzky, D., Leen, T., eds.: Advances in Neural Information Processing Systems
7, Cambridge MA (1995)

9. Sutton, R., Barto, A.: Reinforcement Learning. An Introduction. MIT Press,
Cambridge, Massachusetts (2000)

10. Flentge, F.: Learning to approach a moving ball with a simulated two-wheeled
robot. In: RoboCup International Symposium 2005, Osaka (submitted)


