
Brainstormers 3D – Team Description 2005

Marc Halbrügge and Arne Voigtländer

AG Neuroinformatik, Universität Osnabrück, 49069 Osnabrück, Germany

Abstract. The main interest behind the Brainstormers’ effort in the
robocup soccer domain is to develop and to apply machine learning tech-
niques in complex domains. Especially, we are interested in reinforcement
learning methods, where the training signal is only given in terms of suc-
cess or failure. Our final goal is a learning system, where we only plug
in ’win the match’ – and our agents learn to generate the appropriate
behaviour. As the server for the 2005 competition is not yet finished,
this paper mostly describes changes since 2004 in the architecture of the
Brainstormers3d team and the self-localization.

1 Design Principles

The 3D team is based on the following principles:

– Two main modules: world module and decision making module
– Linear models are used to approximate future world states
– Input to the decision module is the approximate, complete world state
– The soccer environment is modelled as an Markovian Decision Process

(MDP)
– Decision making is organized in complex and less complex behaviours
– A steadily growing part of the behaviours is learned by Reinforcement

Learning methods
– Modern AI methods are applied wherever possible and useful

The decision making module of the 2004 agent was based on the agenttest

reference implementation. Different methods of a behavior class were called de-
pending on the current playmode. Our new architecture differs significantly from
this first approach.

The different skills are layered corresponding to their complexity as shown
in Figure 1. The idea behind this architecture is to divide the team tactic into
subtasks that can be solved more easily (divide and conquer).

To avoid complicated nested switch or if statements, we created different
classes for each type of player (the top box in Figure 1). The different players
use the same medium level skills like GoalShot or Intersect. These depend on
the low level skills like GoToPos.

Whenever we can come up with a simple analytical algorithm, we use it.
Reinforcement Learning methods are used in the remaining cases.

An example for the former case is the GoToPos behavior: The agent drives
at maximum speed towards the target position until the minimal break distance
is reached. Then the drive vector is inverted.



Orientation GoToPos GoToBall

GoalShot KickTowardsGoal Intersect KickBallAway

Forward Line MidField Defense Goalie abstract

concrete

Fig. 1. The Behavior Architecture

2 Reinforcement Learning of Team Strategies

The more complex decisions, for example when to stop the positioning to per-
form the goalshot, are hard to program ’by hand’. Machine Learning provides
algorithms that find good solutions to these problems.

The idea behind our approach is to find a value function V (s, u) that describes
how desirable a pair of situation and action is. V is a mapping from a state s

and an action u to a value in [0,1]. A value close to 1 indicates success, a value
close to 0 failure.

The value function is estimated using the Q(λ) algorithm [1, chapter 7] with
λ close to 1. The state s consists of the position of the agent, the ball and the
opponents. The action u consists of five different relative positions, the decision
whether to kick or not and the kick force.

As we restrict the value of Q to the range [0,1], we can reinterpret it as the
probability of success and use logistic regression [2] as function approximator.
This is mathematically equivalent to a neural net without hidden layers.

3 Self-Localization

In order to be able to model the environment of the agent as a Markovian
Decision Process [3], the actual state of the agent is a 8-dimensional vector
containing means and variances of actual coordinates (disregarding the height)
and velocities.



Monte-Carlo-Methods of estimation have been used to approximate the tran-
sition function of the agent’s state given an action vector. We use multivariate
regression as function approximator. We prefer linear and polynomial models for
several reasons:

– The resulting function is easy to comprehend and verbalize, therefore
testable for plausability.

– Both the model and every single regression weight can be tested for
statistical significance. This way the optimal number of weights can be
determined easily. The well known “bias-variance-dilemma” trading good
fit for good generalization, can be solved this way.

– Repeated tests allow a stepwise procedure.

The position of the agent is determined by integrating the vision and odo-
metric information using Kalman filter techniques [4]. When the current vision
is very unlikely (p < 0.001) given its prediction, an orientation reaction is forced,
just like a human raises his brows after being stumbled by something very un-
usual.

Error (m)

Simulation Step

0.25

0.20

0.15

0.10

0.05

0.00

6050403020100

Fig. 2. Self-Localization Error

The 2004 agent only used visual information for the self-localization. The
Kalman filter estimated the current velocity indirectly from the change in po-
sition between two steps. This led to big errors when the force vector changed.
Figure 2 shows the localization error of an agent first standing still, then moving
15m and finally stopping again. Dots are Kalman filter errors in meters, crosses



show the error of the new self localization algorithm. There are two big peaks
in the dot-line caused by changes in the acceleration. As acceleration was not
modelled in the Kalman filter, it is not able to predict the next state.

Our new approach leads to much better results. Starting at a moderate error
level, the integration of odometric data fits nicely into the perceived position
changes. Although the old Kalman filter sometimes shows slightly lower errors
(after long periods of constant movement), the new model is much better in
situations that really count: when the agent stops to kick the ball.

As the agent’s movement and vision will change completely in the 2005 com-
petition, these successes wont last long. But we are confident that our approach
has enough degrees of freedom to fit well into the new environment.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

2. Hosmer, D.W., Lemeshow, S.: Applied logistic regression. Wiley, New York (1989)
3. Puterman, M.L.: Markov decision processes : discrete stochastic dynamic program-

ming. Wiley series in probability and mathematical statistics : Applied probability
and statistics. Wiley (1994)

4. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans.
ASME, Series D, Journal of Basic Engineeing 82 (1960) 35–45


