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Abstract. This paper describes the main features of SEU_T 2005 robot 
simulation soccer team. After a brief introduction of SEU_T 2004, the main 
contributions of SEU_T 2005 were presented. They are: hybrid agent 
architecture, transactions in action sending, compound kick, and heterogeneous 
agent selection. Finally, we describe our future study directions. 

1   Introduction 

The SEU_T 2004 robot simulation soccer team has attend the China Robocup 2004 
held in Guangzhou. Our team, which is based on UvA Trilearn 2003 source code, 
ranked 7th in that match, going beyond AmoiensisNQ and CSU_Yunlu. 

This year, we made several extensions to our team. Firstly, we applied hybrid agent 
architecture. Secondly, we use transaction to maintain the consistency of the actions 
sent to the soccer server with the agent’s world model. Thirdly, we implement a new 
kick skill, which is better than previous one. Finally, we introduce heterogeneous 
agent to our team. 

2   Agent Architecture 

The SEU_T 2005 robot simulation soccer team use hybrid agent architecture. It 
consists of modeling, communications, skills, domain knowledge, and deliberative 
reasoning. Since the soccer server’s low band width limitation, we only use 
communication to share world model between agents. The modeling module gathers 
information from the real world, and abstract them to the internal form which is used 
by reasoning. The deliberative reasoning module is our high level decision 
component. It reads the information abstracted by the modeling, then use domain 
knowledge to decide which skill should take. Finally, the skill component decompose 
the task to several soccer commands and send them. Figure 1 depicts our agent 
architecture. 
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Fig. 1.  SEU_T 2005 agent architecture 

3   Transactions in Action Sending 

Since the soccer server is a discrete real time system, the time when agent should send 
actions to server is of vital importance.  

On one hand, the agent should send actions as soon as possible in order to prevent 
holes, but on the other hand the agent should make decisions based on the last world 
model, so he should send actions as late as he can. Assume the actions must be sent to 
the server before m milliseconds; the visual information will need n milliseconds to 
arrive, the agent decision making last p seconds. If p < m – n, the agent can make 
decisions on the last visual information. But in some situations, the agent can not do 
whole decisions before m – n seconds but only part of them since reasoning process is 
too complex. What should he send to server? The agent should not send actions in his 
current buffered command queue, because the reasoning process is not completed, so 
some actions was made based on the sense body message, but others decided by 
visual message. The essence is how to maintain the consistency of actions sent by 
agent with his world model. 

Our solution to this problem is using transaction. The idea and term is borrowed 
from database area. We use transaction to protect the decision making process. When 
the sense body message arrive, we start the decision making transaction, usually, it 
completed. When the visual message arrival, we also start the same transaction, if the 
transaction committed, the agent completed his decision making, the actions in 
buffered queue sent normally. If not, it means that there are not enough resources to 
let the agent finish his reasoning, so we roll back the last transaction. Thus the actions 
sent to the server was fully based on sense body message, the agent will always stay 
in a consistent state. 
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4   Compound Kick 

Whether to be skillful in completing a kick task, such as pass, shoot, is critical in 
robocup soccer match. A lot of work has studied the problem. The most promising 
one is Q-learning combined with adversarial planning introduced by TsinghuAeolus. 
Generally, we adopt their idea, but made a lot of improvements. Firstly, we optimized 
for heterogeneous agent’s kick rand and kick margin. Secondly, we use a new 
decision process which is totally different from TsinghuAeolus to map the real 
continuous space to discrete training state. 

A kick task is that given a initial state in current cycle, planning a series of kick to 
accelerate the ball to desire velocity. The decision process should be efficient, robust, 
and adversarial. Like TsinghuAeolus, our solution includes two steps. The first one is 
offline learning. The second one is online planning. In offline learning, the spaces and 
actions were discretized. The Q-learning method is adopted to evaluate different 
actions. We use a variable reward method to optimize for heterogeneous agent’s kick 
rand and kick margin. In the second one, we use a mapping method to map the 
continuous spaces in real math to discrete spaces in offline learning. 

Define the player’s center as the coordinate origin, the ball’s desired velocity 
direction as the x-axis. In the offline learning phrase, we only consider the ball’s 
relative position and desired speed, all the other things were ignored, i.e. agent body 
facing, agent global velocity, ball initial speed. The ball was randomly placed in the 
player’s kickable margin area, then the kicker learned how to use a lot of small kicks 
to accelerate ball to desired speed. In order to optimize for heterogeneous agent’s kick 
rand and kick margin, we use a variable reward method to evaluate the actions agent 
selected.  

If the ball can be accelerated to the desired speed in the next cycle, the reward is 
1.0 – cost(A). Otherwise the kicker get the reward 0.05 – cost(A).  

cost(A) is the cost of the action agent take action A.  

cost(A) = ×α bvel + ×β fabs(bdist)/margin (1) 

bvel is the absolute speed the ball can get when use A , and bdist is the relative 
distance the ball travel. In our reward scheme, the higher velocity and further distance 
the agent kick ball to, the lower the reward he got. Thus we encourage the kicker to 
kick ball small and short. Use this technique, the influence of the heterogeneous 
agent’s different kick rand and kick margin were decreased to least. 

In the online phrase, we use a lot of functions to map the continuous spaces to the 
discrete training one. We consider all other things ignored by offline learning, i.e. 
agent body facing, player’s move, desired velocity direction. For compensating the 
agent body facing, we use function f1 to rotate the ball’s position to a corresponding 
training one, following the criteria that in both cases the effective kick power was the 
same. With the same idea, we use f2 to compensate the player’s move and f3 to 
mediate the real desired velocity direction with the offline learning case. We also use 
f4 to avoid side line and f5 to avoid closing opponent. Finally, we combined the five 
small mapping functions into one to decide which discrete space should be used. 
Figure 2 depicts how we compensate agent body facing. 
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Fig. 2. example for compensating agent body facing 

We test our method in 10 real matches, the result is perfect. The agent can 
accelerate ball to desired speed as fast as possible and with little influences of the kick 
rand and kick margin. Our implementation was better than TsinghuAeolus, since we 
take more things into account and we can fully use Q-table, while their 
implementation can not. 

5   Heterogeneous Agent Selection 

We abstract 4 criterions from 11 heterogeneous parameters. Firstly, we calculate the 
agent’s start up cycle. Although the player’s max speed was fixed to 1.2 in current 
soccer server, different agent can reach the speed using different time, the smaller the 
better. Secondly, the stamina factor is taken into consideration. When the player run 
in max speed, he will lose stamina, the little the better. We consider the kick rand and 
kick margin factor finally, because our kick skill was influenced little by the two 
parameters. 

To combine the all the criterions, firstly we normalize each one to [0.0, 1.0], then 
use following formula: 

 
 

F = cycupstart __×α  + randkickloststa __ ×+× γβ  

marginkick _×+ λ  

(2) 

Then all the player types will sort by the value, the highest is the best. 

6   Conclusion and Future Work 

In this paper, we have discussed our main work done in SEU_T 2005. For future 
study, we will concentrate on using the transactions to high level decisions, such as 
wall pass, because the all or nothing semantic fits well in such situation. We are also 
interested in using reinforcement learning to improve our agent’s individual skill, 
especially in adversarial dribbling. 
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