
NuBot 2005 Team Description

Wenjie Shu†, Fangyi sun and Zhiqiang Zheng‡

College of Electro-Mechanic and Automation
National University of Defense Technology

Changsha,Hunan, 410073 P.R.China
Email:†wjshu 0407@hotmail.com and ‡xyzheng@sohu.com

Abstract. The Robosoccer simulation environment is an excellent sim-
ulation of the soccer domain, in which software agent act autonomously,
with limited perception, action and communication abilities. In this pa-
per, we describe the main features of our soccer simulation team —
NuBot, which include the defense strategy and the Heteroplayer strategy
of our team. The simulation match results show that our improvement
of defense strategy is obvious. And also the methods proposed to solve
the heteroplayer strategy achieve superiors performance.

1 Introduction

The Robosoccer simulation environment is an excellent simulation of the soccer
domain, in which software agents act autonomously, having very limited percep-
tion, limited action abilities and a single unreliable channel with low bandwidth
for communication [3]. A set of eleven agents must work together trying to opti-
mize their defensive and offensive strategy to the best of their abilities in every
respect.

In this paper, we propose the hybrid learning method that is based on the
combination of the static learning and dynamic learning methods and applies
to the defense strategy. The static learning is the most method that used in the
Robosoccer simulation and work well in some scenes. But it can not satisfy the
dynamic requirement of the Robosoccer simulation environment. The samples of
training are not so self-contained and the training exists partial minimum value,
especially some samples are not training. The dynamic learning can offsets the
shortage of the static learning.

Heteroplayer selection strategy is another challenge of Robosoccer simula-
tion. In this paper, we first transfer this problem to an assignment problem and
propose two methods to solve it.

The remainder of this paper is organized as follows. In section 2, the global
planning for defense based on the hybrid learning is presented. The Heteroplayer
strategy problem is described in section 3. In section 4, we proposed two methods
to solve the heteroplayer selection problem. The simulation match results is given
in section 5. Finally, we will give some conclusions and describe future research
directions in section 6.



2

2 Hybrid Learning Method and its application in the
planing of Defense

The hybrid learning combine the static learning and dynamic learning. The
former is mostly used in the simulated Robosoccer terms and can make most
use of the expert knowledge. However, the static learning which is based on
the Self-Organizing feature mapping often lead to local diminutive value, as the
world model is not so exactly. The latter can offsets the shortage of the static
learning.

In this section, we will apply the hybrid learning method to the planning of
Defense. Defense plays an indispensable role in real soccer game and in Robosoc-
cer simulation. The defense problem in Robosoccer simulation game is obviously
a process of distributed planning and dynamic coordination.

2.1 The defensive approach based on the static learning

The static learning based on learning contains the basic formation, the design of
defense action and the assignment of arrangements. The basic formation deter-
mines a player’s position by standard role, ball position and opponent position.
The opponent basic formation contains the possible route pass.

In our simulated Robosoccer teams Nubot 2005, four types of defense actions
are defined as in [2]:

— 1. Block: intersecting an opponent possessing the ball in the outer side
of our goal, preventing him from pushing forward.

— 2. Mark: keeping up with an opponent without ball so that his teammates
cannot pass the ball to him.

— 3. Point Defend: staying at the basic formation position, this will benefit
when a nearby teammate fail in 1 vs. 1 defense or when the team regains control
of the ball.

— 4. Interception: when the ball is free or not controlled by the opponent.
To simplify the problem, we set the rule that one defender cannot defend

against two opponent at the same time, but permit two defenders to defend
against the same opponent, which is difference with the muter operator in [2].

We defined one evaluation function for each type of function. Three variables
are used as the input of each evaluation function. The three variables are related
to the player’s current position and basic formation position, the ball’s position,
the opponents’ position.

We simulate the thoughtway of human football and get the sample of train-
ing from the expert’s experience. Self-Organizing feature mapping has favorable
characteristic of self-Organizing, which is close to the human thoughtway. It has
strong functional capacity. Here we choose the Self-Organizing Feature Mapping
for encoding evaluation functions. To attain the actual value of each function,
we set some typical scenes, extract input values from them, and endow output
values to the functions. After training, networks are tested to ensure that they
fit requirements of our defense strategy of our team, thus evaluation functions



3

are defined. The rest of the planning goes as the TinghuaAelous standard pro-
cedure [2] and no further discussion is needed.

2.2 The defensive approach based on the dynamic learning

Although the static learning work well in most scenes, it can not satisfy the
dynamic requirement of the Robosoccer simulation environment. The samples
of training are not so self-contained and the training of Self-Organizing feature
mapping exist partial minimum value, especially some samples are not training.

The dynamic learning offsets the shortage of the static learning learning
by noting the opponent’s characteristic and the opponent’s strategy. When the
opponent was failed in aggression, we define that the defensive strategy was
successive. So we will use the referenced data as the next defensive bout. We
also define three basic offensive characteristic of the opponent:

— 1. Pass: The team is accomplished in pass, such as the Tinghuaelous
team.

— 2. Cincture: The team is accomplished in taking the ball, such as the
STEP team.

— 3. Pass And Cincture: The team is accomplished in pass and taking
the ball.

The next question is how to differentiate the basic offensive characteristic
of the opponent. We define one evaluation function for each type of function.
Two variables are used as the input of each evaluation function, Control-ball-
time, which describe the time of the ball is controlled by the opponent, and
the ball’s transformation which measures the ball’s angle transformation per
cycle relative to the goal. The function output increases with the control-ball-
time and decreases with the ball’s transformation. To attain the actual value
of each function, we collect lots of samples which are related to the two input
variables from the match vs the STEP team and TinghuAeolus team. After
training, networks are tested to ensure that they fit requirements mentioned in
the previous section, thus evaluation functions are defined. We also define three
basic defensive characteristic of ourselves which are related to the player’s basic
point:

— 1. Active: The defensive strategy is active, which puts up the player is
inclined to take the action such as the block and mark.

— 2. Passive: The defensive strategy is passive, which puts up the player
is inclined to take the action such as the point defend.

— 3. Eclectic: The defensive strategy is not so active and passive, which
puts up the player is inclined to take the action such as the block and point
defended at right time.

We will transfer different database which decide three different defensive char-
acteristic of ourselves to determine our defensive strategy according to different
opponent characteristic, which is determined by the function output.

The dynamic learning can take different action according to different oppo-
nent characteristic, though this learning mode is limited.



4

3 Problem Description of Heteroplayer Strategy

Before the problem description, we shall first define a set of index function which
reflect the requests for the heteroplayer of our Robosoccer simulation team.

Heteroplayer has different characteristics which are based on certain trade-
offs with respect to the player parameter values. The trade-offs of current server
are shown in Table 1 [1].

Table 1. Trade-offs between players parameters for heteroplayer

Improvement Weakness Trade-off description

player speed max stamina inc max Player is faster, but his stamina recovery is slower.
player decay interia moment Player’s speed decay slower, but he can turn less.

dash power rate player size Player can accelerate faster, but he is smaller
kickable margin kick rand Kickable distance is larger, but noise is added to kick
extra stamina effort min effort max Player has more stamina, but dash is less efficient

Different teams don’t always have the same requests for each player. Usually,
we hope our players have high speed, acceleration, stamina, and also can turn
and intercept the ball quickly. In this paper, we set up a set of function of
these indexes called index function which uses the heteroplayer parameters values
provided by the server.

Speed Index f1 Speed Index reflects the high speed that the player can be
reached, and it is scaled by the basic parameter player speed max, i.e.,

f1 = player speed max (1)

Acceleration Index f2 We hope our player can reach his max speed as quickly
as possible. The acceleration process can be described as Fig. 1. Acceleration is
another important index for the players. For simplification, we assume that a
player can reach his max speed in two cycles and choose the average speed during
first two cycles as the index.

Suppose the parameter effort of the stamina model in [1] is constant and
equals to effort max. The initial speed is v = 0.

According to the Movement Model, the speed of the first cycle is v1 = a,
where a = power ∗ dash power rate ∗ effort max. Eventually speed after two
cycles is

v2 = a ∗ player decay + a (2)

Acceleration can be formulated as the average speed during first two cycles:

f2 = v̄ =
v1 + v2

2
=

a ∗ (2 + player decay)
2

(3)



5

2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

Cycles

S
pe

ed

Fig. 1. Speed Vs. Cycles

Turn Index f3 For some players, we expect they turn neatly on the field which
is described by the turn index. Here we let it equal to the actual-angle that a
player turns after carrying out command turn. It can be calculated as

f3 = moment/(1.0 + interiamoment ∗ player − speed) (4)

where moment is a argument of command turn, whose valid value is between
minmoment and maxmoment [1].

If a player is quiescent, his actual angle will equal the value of moment. But
when he is moving, it will be more difficult for him to turn because of inertia
and the actual angle will be less than moment.

Stamina Index f4 The stamina index function can be described as the cycles
that the player keep running at the max speed (v = 1.0) of the default type player
before his stamina is lower than the terminate value of the stamina. Suppose
the player’s initial stamina is S0 and the terminate value of the stamina is St,
which is higher than recover decrement threshold (it can be expressed as St ≥
recover dec thr∗stmani max). At each cycle, player must use dash command to
compensate for the reduction of his speed. According the the movement model
and dash model in [1], we can get

v ∗ (1− player decay) = power ∗ effort max ∗ dash power rate (5)

then

power =
v ∗ (1− player decay)

effort max ∗ dash power rate
. (6)

Furthermore, a player’s stamina gets restored by stamina inc max in each cycle.
So a player’s actual decrement of stamina in each cycle is

4S = power − stamina inc max, (7)



6

then f4 can expressed as

f4 = bSt − S0

4S
c. (8)

Intercept Index f5 Intercept Index reflects the player’s ability of interception,
and it is scaled by the basic parameter kickable margin.

f5 = kickable margin (9)

In order to make these indexes function comparable, we should first standardize
them. Suppose a particular function fi alters in the set [fmin, fmax], it can be
standardized as

f
′
i =

fi − fmin

fmax − fi
. (10)

Now we suppose all these index functions are standardized, then they are
comparable.

3.1 Problem Description

In fact, the problem of heteroplayer strategy can be described as an assignment
problem: there are altogether twenty-eight players (including three of each type
of heteroplayers and ten default ones: 3 ∗ 6 + 10 = 28). We need choose ten
players from all the 28 players to build up our team (excluding the goalie). Let
the player type chosen by the role j among all the 28 players is k(m). We set
xmj = 1 if role j choose the mth player from the 28 players, otherwise xmj = 0.
we first set the evaluation function of the role j selecting player type k(m) as

Fjk(m) =
∑
m

∑

i

xmjcijfik(m) for i = 1, . . . , 5 m = 1, . . . , 28 (11)

where fik(m) is the ith index function of heteroplayer type k(m) and cij is the
weight of the index function fi to role j.

Then the object function of the team’s Heteroplayer strategy can be described
as following

max G =
∑

j

hjFj for j = 1, . . . , 10 (12)

s.t.
∑

j

xmj = 1, j = 1, 2, . . . , 10

∑
m

xmj = 1, m = 1, 2, . . . , 28

where hj is the weight of role j in the whole team.
This is a special kind of 0-1 programming. And the value of cij and hj can

be get by the Analytical Hierarchy Process (AHP) in the following section.



7

3.2 Analytical Hierarchy Process (AHP)

Aforesaid five indexes are not of the same importance to role j, i.e., each index
function fi has different weight cij to role j in the estimation function. Here we
use the AHP method to decide the value of the cij , which can be expressed as
following:

Step 1: wij is assigned to each pair of (fi, fj). Comparing the indexes pairwise
and express your judgements. By choosing one of the following nine expressions:
equal importance, moderate dominance, strong dominance, very strong domi-
nance, extreme dominance, or an intermediate judgement between two consec-
utive ones of those four, each answer is then automatically converted into a
number wij according to Table 2.

Table 2. Converting ”judgements” to ”numbers”

Expressions Associated Numbers

equal 1
equal to moderate 2

moderate 3
moderate to strong 4

strong 5
strong to very strong 6

very strong 7
very strong to extreme 8

extreme 9

Step 2: After the questioning process, a positive reciprocal matrix (one line and
one column for each element f1, f2, . . . , f5) is filled in placing at the intersection
of the line of fi with the column of fj the number.





wij if fi dominates fj

1/wij if fj dominates fi

1 if fi does not dominate fj and also fj does not dominate fi

(13)

W =




1 w12 . . . w15

1/w12 1 . . . w25

...
...

. . .
...

1/w15 1/w25 . . . 1


 (14)

Step 3: calculates the maximal eigenvalue of matrix W and determines the re-
spective normalized eigenvector: the components of this vector are the numerical
scale w : (f1, f2, . . . , f5) → < obtained is a ratio scale.



8

Step 4: Consistency test prevents the acceptance of the priorities if the incon-
sistency level is high. A group values of wij for a center forward and a group
values of cij for a team which values offence under 4-3-3 formation are in Table
3 and Table 4.

Table 3. Values of wij for a center forward

Speed Acceleration Stamina Turn Intercept

Speed 1 0.5 2 6 6
Acceleration 2 1 3 7 7

Stamina 0.5 0.33 1 4 4
Turn 0.167 0.143 0.25 1 1

Intercept 0.167 0.143 0.25 1 1

Table 4. Value of ci∗

roles c1∗ c2∗ c3∗ c4∗ c5∗
MidForward 0.29103 0.43805 0.047261 0.17639 0.047261
SideForward 0.30301 0.47394 0.036004 0.15105 0.036004

MidBack 0.21405 0.34472 0.037547 0.344472 0.058969
MidField 0.1873 0.28713 0.055918 0.43387 0.035781
BackSide 0.21133 0.34129 0.062811 0.341290 0.043293
MidSide 0.21282 0.3409 0.064995 0.3409 0.040387

hj can be obtained by the same way.

4 Heteroplayer Selection Strategy

In a team, the importance of every player in different position are not same. For
instance, a more aggressive team hope to select an excellent forward while a less
aggressive one may pay more attention to defenders. Then how could we deal
with the difference of players’ significance. One method is the Hungary method,
which deals with the difference of players’ significance by giving different weight
in an estimation function. Another method is to choose the players one by one,
that is to choose the most significant player first, then consider the less important
ones. In that case, we formed the Step-by-Step algorithm .

4.1 The Hungarian Method

Here we use Hungarian method to solve the 0-1 programming described in the
section 3.1. Hungarian method make full use of particularity of an assignment



9

problem and reduce the calculate quantity effectively, which can be described as
following. We first define the square benefit matrix B.

B =




F1k(1) F1k(1) . . . F1k(28)

F2k(1) F2k(1) . . . F2k(28)

...
...

. . .
...

F10k(1) F10k(1) . . . F10k(28)

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




(15)

Step 1: Subtract the minimum number in each row of benefit matrix from the
entire row.

Step 2: Subtract the minimum number in each column of benefit matrix from
the entire column.

Step 3: Cover all zeroes in the benefit matrix with as few lines (horizontal
and/or vertical only) as possible. If the number of lines equals the size of the
benefit matrix, find the solution. If you have covered all of the zeroes with
fewer lines than the size of benefit matrix, find the minimum number that is
uncovered. Subtract it from all uncovered values and add it to any values(s) at
the intersections of your lines.

Step 4: Repeat Step 3 until there is a solution.

The Hungarian method can achieve the global optimization, but also it is
much complicated.

4.2 The Step-by-Step Algorithm

In order to overcome the shortcomings of the Hungary algorithm, we proposed
another algorithm called Step-by-Step algorithm, which in nature is a greedy
algorithm. We choose the heteroplayer one by one according to our team’s
characteristics. At each step, we always require to achieve the maximum of
G =

∑10
j=1 kjFj , which can be done by means of maximizing Fj =

∑5
i=1 cifi.

Step-by-Step algorithm is a local optimal algorithm. Comparing to the Hun-
garian method, this method is much more simple, and can satisfy different strat-
egy of different team.



10

5 Simulation Results

To evaluate our heteroplayer selection strategy, we apply it to 100 matches be-
tween our Robosoccer simulation team NuBot 2005 and other teams, such as
STEP, UVA, Tsinghua and Appol. NuBot uses 4-3-3 formation and pays more
attention to the aggression. Under this circumstance, they have rigorous requests
for their forward. The results are summarized in Table 5.

Table 5. Comparing Result of two algorithms

Hungarian method Step-by-Step algorithm Default

Ḡ 0.5942 0.5762 0.2014
F̄1 0.5087 0.5289 0.2160
F̄2 0.6123 0.5155 0.1923
F̄3 0.5087 0.5294 0.2160
F̄4 0.6123 0.5156 0.1923
F̄5 0.5681 0.4864 0.2101
F̄6 0.5415 0.5315 0.2160
F̄7 0.5324 0.5331 0.2160
F̄8 0.6207 0.6777 0.1987
F̄9 0.6569 0.6826 0.1930

The simulation match results show that in the whole the Hungarian method
performs better than the Step-by-Step algorithm, and the whole team also
achieve the balance in the section of heteroplayer. However, the Step-by-Step
algorithm is much more simple and can select the heteroplayer according to the
team’s characteristic. And also the improvement of our defense strategy is obvi-
ous. The loss goals of every match reduces 2-3 against the RoboCup04 champion
team STEP.

6 Conclusion and Future Work

In this paper we have improved our team’s defense strategy and the simulation
match results show this improvement is obvious.

We also proposed two methods to solve the heteroplayer selection strategy.
The performance of them is superiors.

In our future work, we will the defense strategy and heteroplayer selection
strategy. Also will pay more attention to propose new methods in solving the
high-level strategy of the whole team.

Acknowledgment

We first thank to the members of TinghuAelous team very much, for the Nubot
2005 soccer simulation team was built on the TinghuAeolus2002’s source code.
The released source code save us much time, such that we can pay more attention
on the high-level strategy.



11

References

1. Itsuki Noda et al, Soccer Server Manual, RoboCupFederation.
http://www.robocup.org.

2. Yunpeng Cai, Jiang Chen, Jinyi Yao, Shi Li: Global Planning from Local Eyeshot:
An Implementation of Observation-Based Plan Coordination in RoboCup Simula-
tion Games. RoboCup 2001: 12-21.

3. Luis Paulo Reis, Jose Nuno Lau, Luis Seabra Lopes : F.C.Portugal Team Description
Paper. RoboCup 2001.


