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Abstract. As in the previous years, the RoboCup Soccer Simulation League
team RoboLog consists of a C++ low level and a Prolog higher level part. For
implementation of reactive skills of a soccer agent, we are making use of and
extending the idea of steering behaviors. In our team, we use these extended
steering behaviors, called inverse steering behaviors, for dribbling and obstacle
avoidance.

1 Introduction

With RoboCup 2003, RoboLog Koblenz is participating in the simulated soccer world
championship for the fifth time. As in the years before, high level decisions in our
team are specified with statecharts and implemented in Prolog. For lower levels, we
are using a C++ layer between Prolog and the Soccer Server network interface. The
C++ part handles the parsing of messages, maintains a consistent world model, and also
implements the lower level behaviors of our players.

We have started to reimplement the RoboLog-Kernel from scratch before RoboCup
2002, where we already have been using it for our goalie. To support goal-directed de-
cision making in the Prolog level, our kernel provides basic actions that can make short-
term decisions for obstacle avoidance and skill optimization autonomously. Currently
we are investigating on making use of steering behaviors [5] for making short-term de-
cisions while pursuing several goals at once (like keeping control of the ball, avoiding
opponents and reaching a specific place at the same time).

For the higher-level part of our team we are currently investigating ways to specify
[2] and implement soccer agents. While in the last years goals of an agent were specified
implicitly in our architecture, we are moving to a explicit representation of goals this
year. We hope that the benefit of this approach is an easier maintenance of our Prolog
code base because separate concerns can also be represented separately. The generation
of goals is driven by combination of different kinds of spatial information, which is
another research issue in our project [6].

In this paper, we focus on the steering part of our team. In the subsequent sections
we give a brief overview of the original concept of steering behaviors and present our
extension of this concept, called inverse steering behaviors, which we use for dribbling
and obstacle avoidance.
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2 Inverse Steering Behaviors

Steering is the reactive, non-deliberative movement of physical agents [3]. Reynolds [5]
defines a hierarchical model where steering is responsible for path determination for au-
tonomous characters in animations and games. In this hierarchy, the layer below steer-
ing, called locomotion, is responsible for the actual implementation of steering goals.
In Simulation League, the locomotion layer is realized by using the Soccer Server low
level commands.

The layer on top of steering, called action selection, represents the deliberative part
of an autonomous agent and deals with selecting the appropriate strategies and plans.
In our framework, the top layer is represented by a Prolog implementation.

The steering layer usually consists of a collection of steering behaviors. When ap-
plied, steering behaviors produce a steering vector which serves as input for the loco-
motion layer. An advantage of steering behaviors is that several ones can be combined
to form a more complex behavior. A problem, however, is how this combination actu-
ally can be achieved without resulting in undesired behaviors. Reynolds [5] proposes
different ways of “blending” steering behaviors, e.g. using their weighted average or
choosing only one behavior at a time according to given priorities. A hybrid arbitration
scheme using and extending these ideas can be found in [4], where it is called prioritized
acceleration allocation.

When experimenting with these arbitration methods for implementing a dribbling
skill, we ran into several problems:

1. Trap situations due to local minima (cyclic behavior).
2. No passage between closely spaced obstacles.
3. Oscillations in the presence of obstacles.

To overcome these drawbacks, we extended the concept of steering behaviors [1].
In the original approach, steering behaviors only take facts about the environment as
input and produce a single steering vector as output. Our approach additionally takes a
number of different steering vectors as input denoting possible solutions for the steering
task. Based on a given criterion, each direction produces a certain cost. In turn, from the
calculated cost we produce a rating for each steering vector as output. In principle we
inverted the process of each single steering behavior, which is why we call our approach
inverse steering behaviors. To execute a single behavior, the steering vector producing
the smallest cost is selected.

To achieve complex tasks, several inverse steering behaviors can be combined simi-
lar to the original approach. In our case the problem is not to combine different steering
vectors or actions, but to merge the ratings for each given direction. All relevant behav-
iors for a task have to be executed, producing a rating for each given steering vector.
Merging the ratings is achieved with a heuristics combining ratings of all involved be-
haviors for each direction separately. The result of applying the heuristics for each given
steering vector is a list of ratings like the one produced by a single inverse steering be-
havior. Like in the case of single steering behaviors the “best” action can be chosen by
simply selecting the steering direction minimizing the cost.



The heuristics employed in the process of combining several behaviors is dependent
on the number of behaviors involved and specific to the complex task that has to be
achieved.

With an appropriate heuristics, merging the ratings for each single behavior can
produce better results than the original approach simply adding up steering vectors or
selecting one. In cases where two behaviors have conflicting desires, inverse steering
behaviors will select a steering vector obeying each of the behaviors to a degree, and
thus make a reasonable compromise for all involved behaviors.

3 Navigation Using Inverse Steering Behaviors

When using inverse steering behaviors the task of navigation in a cluttered environ-
ment is modeled as a cost minimization problem. For both, the separate inverse steering
behaviors and the overall navigation task we create heuristic cost functions, based on
which the quality of a given solution can be measured. For a better understanding of
the latter statements, we will subsequently discuss a navigation example, where colli-
sion free paths are achieved using the obstacle avoidance and seek (goal approaching)
behavior.

In Fig. 1 we see a particular situation, where a robot has to decide in which direc-
tion to steer. The decision of the robot has to satisfy both his will of avoiding collisions
and taking the fastest way to the goal. Given the discrete set {θ1,θ2,θ3,θ4} of steering
directions to be evaluated, we first apply the inverse steering behaviors obstacle avoid-
ance and seek separately. These inverse steering behaviors assign each of the given
directions a cost with respect to a criterion related to the inherent task.
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Fig. 1. Evaluation of directions to avoid obstacles.

For instance the seek behavior assigns costs according to the difference between the
direction α denoting the straight path to the goal position and the currently processed
direction θi, which can be expressed using the formula δi = ||α− θi||. Consequently



direction θ2 and θ3 receive fewer costs, as their deviation to α is smaller. In contrast, the
obstacle avoidance behavior assigns costs based on the number xθi of obstacles in the
currently processed direction. As a result θ2 receives the cost value 1 due to an occurring
obstacle, whereas θ1,θ3 and θ4 are obstacle free and thus receive the cost value 0. The
number xθi is derived by assigning each direction a rectangular area. These rectangular
areas represent a possible path to be taken by the agent. The width and the length of each
rectangular area are based on the agent’s width and velocity. The faster he is, the sooner
he must anticipate a potential collision. This enables us to extract information about the
existence of obstacles very easily using a geometrical construction of the problem. The
bounding sphere of each object in the near range of the agent is intersected with the
rectangular region of the currently processed direction in order to determine if it lies
inside this region. All objects that fulfill the last condition are considered to be possible
collision partners. Figure 2 shows a trajectory of a dribbling agent using inverse steering
behaviors to determine its path.

Fig. 2. Dribbling around static obstacles.

4 Conclusions and Future Work

In our paper we presented how to implement skills of a soccer agent using inverse
steering behaviors. The introduction of inverse steering behaviors in [1] was motivated
by drawbacks of the original steering behaviors as proposed by Reynolds. Our inverse
steering behaviors are still reactive, fast to calculate, and easy to combine with each
other to build more complex behaviors. Because our agents evaluate several options



before steering, the actions to be performed are better motivated. Additionally, it is
easier to solve the problem of arbitration inherent to steering behaviors using costs as a
measure of quality.

For future work we are planning to investigate on using machine learning techniques
to simplify building heuristics and to combine our hand crafted behaviors with machine
learned ones.
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