
14 October 1998 1/2

Jukka Riekki: Introductory Samba

Introductory Samba
Jukka Riekki

The Samba architecture is targeted at controlling a mobile agent in a dynamic environment. It contains
the following types of modules: Sensors, Actuators, Markers, Behaviors, and Arbiters (see Fig. 1).

The control system is connected to the external world through Sensors and Actuators. Actuators
change the local environment as reasoned by the behaviors. Sensors produce data about the local
environment. A sensor can be also virtual, in which case it receives data from the other modules and
processes it further. Object markers are simple processing elements that ground task related data on
sensor data flow and communicate it to behaviors. Task markers form an interface between the
reactive Samba system and the task layer reasoning the tasks.

Behaviors transform sensor and marker data into commands to actuators. Behaviors produce
primitive reactions to objects, such as “go to an object” and “avoid an object”. The reactions are in
the form of primitive action maps. A separate primitive action map is calculated for each primitive
task of reaching or avoiding an object.

An action map specifies for each possible action how preferable the action is from the perspective
of the producer of the map. The preferences are shown by assigning a weight to each action. The most
common action map type is a velocity map. Velocity maps are three dimensional: an action is
described by a velocity vector (direction, speed) and for each action there is a weight. The weights
form a 2-dimensional surface in the polar coordinate system (direction, speed). In soccer also impulse
maps are utilized. An impulse map presents weights for all the possible different impulses (direction,
magnitude) the agent can give to the ball. It specifies the preferences for the different actions for
kicking the ball to reach an object.

A weight for an action is calculated based on the time to collision. The shorter the time needed to
reach an object, the heavier the weight for that action. For actions that do not result in a collision, the
weights are calculated by approximating to what amount the action progresses the task of reaching
the object. The resulting map contains only positive weights. A map of this kind is called a Goto map,
because the performance of the action with the currently heaviest weight on such a map causes the
agent to reach the corresponding object. An example of a Goto map is shown in Fig. 2. The map
contains a ridge of heavy weights because the object is moving.

An action map containing negative weights is called an Avoid map. It is calculated either by
negating the corresponding Goto map or by a separate procedure. As only positive weights cause
actions to be performed, an Avoid map does not alone trigger any motion, but only prevents some
actions. In other words, an Avoid map prevents collision with an obstacle when a target is being
reached with the help of a Goto map. Fig. 3 shows an Avoid map.

SENSORS ACTUATORS

OBJECT
BEHAVIORS

TASK

TASKS FROM THE TASK LAYER

ARBITERSMARKERS MARKERS

Fig. 1. The Samba architecture. In addition to the signals drawn in the figure, all modules can
receive signals from sensors and object markers.



14 October 1998 2/2

Jukka Riekki: Introductory Samba

An arbiter selects and combines commands. The arbiter combines primitive Goto and Avoid maps
into composite maps by the Maximum of Absolute Values (MAV) method. In this method, the weight
with the maximum absolute value is selected for each action. In other words, the shortest time it takes
to reach an object is selected for each action and the corresponding weight is stored on the composite
map. Thus, the sign of a weight on a composite map specifies whether an obstacle or a target would
be reached first if a certain action were performed. The absolute value of the weight specifies the time
to collision with the object that would be reached first. Fig. 4 illustrates the MAV method for
compiling action maps.

A task is performed by sending the action with the heaviest weight in the appropriate composite
map to the actuators. The task to be executed at each moment is selected by the arbiter. A simple
arbiter goes through the received composite maps in a predefined order and selects the best action
from the first composite map producing an action good enough. A more versatile arbiter considers the
current situation when selecting the composite behavior.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-1

-0.5

0

0.5

1

agent

OBJECT

agent
HEADING

Fig. 2. Left: The situation. Right: An example of a Goto map. The agent reaches the object at the
location marked with the small dot, if it executes the action with the heaviest weight on the Goto
map.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-1

-0.5

0

0.5

1

Fig. 3. An Avoid map corresponding to the Goto map shown in Fig. 2.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-1

-0.5

0

0.5

1

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5

-1

-0.5

0

0.5

1

Fig. 4. A Goto map for a moving target and an Avoid map for a stationary obstacle compiled with
the MAV method. Left: The obstacle is in front of the trajectory of the target, and actions in that
direction are therefore forbidden. Right: The obstacle is behind the trajectory, and no actions are
hence forbidden.


