
1 Team Introduction

CIT 3D team,formerly named CZU 3D from Changzhou Institute of

Technology, which was built in 2005, has taken part in several RoboCup

competitions.Due to various reasons, we could not participate in

RoboCup2009 and RoboCup ChinaOpen2009, but we did not give up the research

work in this field.We Won the top 8 place in RoboCup2012,the 2nd place

in RoboCup2011,the 4th place in RoboCup2008,the 13th place in

RoboCup2006,the top 8 place in Iran Open RoboCup2014,top 8 place in Iran

Open RoboCup2013, the 3rd place in Iran Open RoboCup2012, top 16 place

in Iran Open RoboCup2011,the 3rd place in RoboCup ChinaOpen2014,the 3rd

place in RoboCup ChinaOpen2013,the 3rd place in RoboCup ChinaOpen2012,

the 2nd place in RoboCup ChinaOpen 2011, the 5th place in RoboCup

ChinaOpen2010,the 3rd place in RoboCup ChinaOpen2008,the 2nd place in

RoboCup ChinaOpen 2007,the 12th place in RoboCup ChinaOpen 2006.

In 2014, we published two papers:Research on natural ZMP reference

trajectory for biped robot,Shooting method for humanoid robot based on

three-mass model.Now we treat RoboCup 3D simulation platform as a

algorithm verification platform for biped robot and programming training

platform for students. This year,based on the source code of CIT3D2014,we

improved the team’s performance from two aspects: walking pattern

generator with natural ZMP reference trajectory based on preview control,

motion optimization based on Particle Swarm Optimization(PSO). All of

these are presented in this paper.

2 Walking Pattern Generation with Natural ZMP Reference

Trajectory based on Preview Control

In recent years, let biped robot obtain the ability of human-like

movement has become a hot topic in the field of robotics . Studies have

shown that the ZMP trajectory when human walking is not a fixed point ,

but the curve moving from the heel to the toe. This year our team achieved

human-like biped walking with natural ZMP reference trajectory based on

preview control.Preview control has been widely used to generate the biped

walking patterns.

In single supporting phase, based on the 3-D linear inverted pendulum

model (LIPM) , we can get the dynamical system of biped robot as

u
x
x
x

x
x
x

dt
d



































































1
0
0

000
100
010









 (1)



























x
x
x

g
zp c



10 (2)

where u =
...
x is the input variable. p is ZMP in x direction. x, x˙ and x¨

denotes the position, velocity and acceleration of center of mass (CoM)

in x direction. zc is the height of the plane where the motion of the CoM

is constrained. g means gravity. The system of Eq. (1) and (2) can be

discretized with a sampling time Δt as








kk

kkk

cxp
buAxx 1

(3)

where:






















)(
)(
)(

tkx
tkx
tkx

xk


 (4)

)(tkuuk  (5)

)(tkppk  (6)





















100

10
2/1 2

t
tt

A (7)























t
t
t

b 2/
6/

2

3

(8)

 gzc c /10 (9)

after given the reference of ZMP ref
kp , the evaluation function is

specified as

 22

0
)(jj

j

ref
j RuppQJ 





(10)

According to the theory of preview control, we can get the control lawuk as
follow

 






















ref
Nk

ref
k

Nkk

p

p
fffKxu 

1

21 ,..., (11)

Where

QcbKAbPbbRf
PAbPbbRK

TiTTT
i

TT

)1(1

1

)()(
)(








(12)

Matrix P is the solution of the following Riccati equation:

PAbPbbRPbAQccPAAP TTTTT 1)( (13)

Based on the above formulas,we chose the following parameters to apply

to NAO robot: cz = 0.24m , g = 9.8 sm 2/
, t = 0.02 s , N = 200,Q = 1,R

=0.00000001.After setting ZMP reference trajectory as straight line,we

can get the ZMP reference trajectory,actual ZMP reference trajectory and

actual CoM trajectory shown in Fig. 1. Fig. 2 show some actual walking

scene based on preview control in RoboCup rcssserver3d.

Fig. 1. ZMP and CoM trajectory based preview control

Fig. 2. walking scene based preview control

3 Localization and Noise Reduction Method

There are a variety of methods of robot localization under perfect

visual,for example: gyroscope positioning, a sign pole position, three

sign pole position.In accordance with it,CIT3D soccer simulation uses a

gyroscope positioning combining with a sign pole position and three sign

pole position under the restricted visual.These different methods are

integrated in a structure whice can see from the fig.3.Next we introduce

the details of these methods.

__

Input:msg_vision //Visual information coming from the server

Output: //Position and orientation of the robot itself

Parse(msg_vision) → num_flag //Saw the number of sign posts

Switch num_flag

{ case‘ 0’:

gyroscope positioning LocWithGyro → , ;break;

case‘ 3’:

three sign pole position LocWithThreeFlag → , ;break;

Default:

a sign pole position LocWithOneFlag → ,;break;}

Fig3 the method under the restricted visual

Gyroscope positioning:This method is relatively simple , local

information that get from the gyroscope will be converted to information

of the global coordinate system.Then these information is directly used

to calculate the position.Meanwhile,these information will be pretreated

to get a estimated value of direction through world model,Then we would

get the result that a estimated value of direction subtract the known

location of the corresponding.

a sign pole position:when the robot only see a flag pole,We assume

that this flag pole position is Pvision in the Robot vision,which is a

relative distance vector. P flag is the global coordinate sign

posts.According to the formula (14), we can calculate the global

coordinates of the robot.

PRPP visionrobotflagrobot  (14)

Three sign pole position:If we know the global coordinates of three

sign posts,),,(111 zyx ,),, 222(zyx ,),,(333 zyx ,and Their distance from the

robot's perspective,d1 ,d 2 ,d 3 ,We will extract the ternary quadratic

group According to the formula (15).

dzzyyxx
dzzyyxx
dzzyyxx

2

2

222

2

2

222

2

1

222

)()()(
)()()(
)()()(

223

222

111












(15)

According to the principle of the local coordinate system and

homogeneous transformation in the robotics,We can get the following

equations:

pp relflag
Rp  (16)














































p
p
p

p
p
p

rel

rel

rel

p

p

p

R

flag

flag

flag

3

2

1
1

3

2

1

(17)

According to equations,we can get the head posture of robot.Through

each part of the homogeneous transformation matrix, we can also get the

rest of the body posture of robot.

4 Motion Optimization Based on PSO

As we all know, a stable and flexible bipedal walk is always the

key whether the humanoid robot can complete the task smoothly and quickly

or not. To get such walking gait by machine learning method, Particle swarm

optimization(pso) is presented,which was developed by Kennedy and

Eberhart in 1995,has been widely applied to different fields such as

multi-objective optimization, data classification,data clustering,

signal processing, robot path planning and so on.In the learning

process,we should iterate N times and evaluate the optimal value each time

by using PSO algorithm ,then we’ll get a series of optimal

parameters.Following is the evaluation function of walking gait

optimization.Fig.4 show the best fitness during the iterative

process .Obviously,the least evaluation value is the best one.Finally,we

can get a series of parameters.The we will go on the next iteration on

the basis of the last time,According to the formula of PSO algorithm.what

we do is let one robot to perform machine learning ,however, the results

are sometimes a local optimum rather than a global optimal.So at the next

step,we will run the 11 players at the same time which can exchange the

information according to the algorithm of PSO.

Algorithm 1 evaluation function

Float walk::GetCost()

{

Float Cost=0;

If(startPos.x()>endPosx()){

Cost=0;

Return(Cost);

}

Cost=startPos.getDistanceTo(endPos);

If(addFallDownPunish && fallDown){

Cost-=fallDownPunishment;

}

If(addBodyVariancePunish) //increased punishment if the body of

robot sway too much

{

Cost-=bodyVariancePunishment;

}

Return(-Cost);

}

Fig. 4. the iterative process

