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Abstract 
Apollo3D is a team in RoboCup soccer simulation 3D league. We mainly aim at 

building a systematical architecture of intelligent and skillful robots. In the newest 11 

vs 11 version, due to the introduction of sensor noise and the expansion of the soccer 

field, a more accurate positioning and efficient upper strategy are need in order to 

avoiding robot being in a disorder. In the past year, our team Apollo3D successful 

devised a new localization system and a new set of cooperating tactics of the agents. In this 

paper, we introduce the mechanism of localization, dynamic footstep planning, 

omnidirectional walking skill , kicking design motion and decision making system. 

 

1 Introduction 
Apollo Simulation 3D Team was established in 2006, and successfully attended 

several competitions. We have won the first place in Robocup 2013 and the second place 

in 2013 Iran Robocup recently. The simulated Nao is much like the real one that attracts 

a large mount of students to devote to this field. Thanks to the devotion and 

cooperation of these students, several achievements had been achieved in the past years.  

With the developing and improving of the RoboCup3D platform, the number of 

players has increased to 11, the field has expanded to 600 square meters, and we all must 

use heterogeneous players. These changes urge us to reconsider the action of each robot, 

the localization and communication problem. On this basis, in order to enhance the 

overall performance, we redesign the decision making system of our robots. Section 2 will 

introduce the self-localization of particle filter and how to use Kalman filter to track 

the ball and other agents. Section 3 will introduce a footstep planner for biped robots 

using the method of sequence approximation. Section 4 will introduce the walking skill 

of Apollo3D. Section 5 will discuss the hierarchical role assignment and multi-agent 

cooperation system. 

 

 



2 Localization 
 
2.1 Particle Filter Self-localization 

Humanoid robot self-localization means estimating the positions and orientations of the 

local coordinates 
v  relative to the world frame 

w  (Fig.1. This problem involves at 

least 6 configuration parameters (x, y, z, R, P, Y ), and it is hard to build their 

correlations with the motion model using limited odometers and sensors. Meanwhile, 

most of the time that the robot actually needs to localize itself are when it walks upright 

on a flat surface and the hip joints are restricted in a horizontal plane. Thus the z, R, P 

(height, roll and pitch) of 
v  are bounded in a small range. So the robot only needs to 

predict the 2D position(x, y) and the heading direction θ.  

 
Figure 1: Diagram of the robot vision system 

Particle filters estimate the posterior distribution of the state xt of the dynamical 

system conditioned on the sensor measurement zt and control information ut−1, 

1( ) ( | , )t t t tBel x p x z u . This posterior can be computed recursively using Bayes rules 

and partially observable controllable Markov chains:  

1 1 1( ) ( | , ) ( )t t t t tBel x p x x u Bel x                       (1) 

1( | , ) ( | ) ( )t t t t t tp x z u p z x Bel x                      (2) 

Equation (1) is called motion update phase. where the robot needs to predict the new 

state of position and orientation xt basing on its motion ut−1 according to its odometers 

and the last state Bel(xt−1). Equation (2) is the observation update phase. In this phase, 

the robots update to the current state on condition of the measurement of the sensors zt.  

The key idea of the particle filter is to represent the posterior 1( | , )t t tp x z u   by a set of 

weighted state samples: 
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where each ( )i

tx  stands for an instance of estimated state with ( )i

tw being its weight. 

Theoretically, as N  the distribution of these samples match the density of the 



posterior. In practice, we use 1000 particles to approximate the posterior. Algorithm 1 

shows the details.  

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

Finally, the algorithm returns St, we simply calculate the average of ( )i

tx
 
to stimate 

the state at time t.  

 

2.2 Kalman Filter Tracking 

In RoboCup3D environment, the position of the ball and agents keep changing all the 

time. If each individual agent can accurately predict other agents’ movement, it will 

better seize the initiative. Especially at the risk of opponents shooting, our goalie’s quick 

reponse to stop the ball largely depend on its prediction of the velocity of the ball. The 

Kalman filter not only can increase the accuracy of tracking other objects, but also can 

help predict their other states like velocity.  

 

3 Dynamic Footstep Planner 
The walking parameters of robots are defined as y (the forward direction), x (the 

lateral direction) and   (the turning degree) at every time. In competition, the robots 

want to reach the goal as possible as fast. In order to handle the problem, the robots 

need to adjust the three above waking parameters in dynamic environment. A 

sequence theorem is employed to control the three parameters in our team codes. In a 

local coordinate system centered at the robot, the goal can be defined 

as  0 0 0 0, ,t t t tstate x y  . Once each walking step  , ,w w w w

i i i iwalk x y   of robots is 

performed, the goal state is adjusted from ( , , )t t t t

i i i istate x y   to 

 1 1 1, ,t t w t w t w

i i i i i i istate x x y y       , shown in Fig.2. 

app:ds:coordinate
app:ds:system


yt
i-1

Xi-1

Xi
θt

i-1

xt
i-1

Yi

Oi

Yi-1

Oi-1

Ot

                 

yt
i

xt
i

θt
i

Yi-1

Oi-1

Ot

Oi

Yi

 

Fig.2. The change of goal state during the walking of robots 

Let 
1 1 1/ / / , 0w t w t w t

i i i i i i i ix x y y k k       . As a result, the , ,t t t

i i ix y   can 

arrive at zero at the same time. In other words, the robots arrive at the goal. Let 

2 2 2

1 1 1

t t t

i i i i ik v x y      , the following equation can be attained: 
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where iv  is an important parameter which can control the walking speed of robots. 

Due to the dynamic constraints, we need to assure 

max

w w

ix x max

w w

iy y max

w w

i  , where 
max

wx  is the maximum speed of robot 

lateral movement, 
max

wy  is the maximum forward speed, and 
max

w  is the 

maximum turning speed at every step. In order to improve the walking speed as far as 

possible, let: 
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According to the (4) and (5), we can attain 
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As a result, if 
max max maxmin( / ,min( / , / ))

i i i

w w w

i x yv x k y k k , the robots can walk 

at the most speed in the dynamic constraints. 

 

4 Omnidirectional Walking Skill 
This section mainly describes the omnidirectional walking motion design of our team 

Apollo3D. In this section, we employed a model which is based on double linear inverted 

pendulum to predict and control the robot walking motion. And then we used machine 

learning algorithm to optimize walking parameters. Ultimately, we realized the rapidly and 

stably omnidirectional walking of biped robots in complex and dynamic environment.  
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Figure3. Omnidirectional walking diagram 

In the process of competition, the changing external environment requires the robot to 

alter its orientation at any time, turn agilely and forward fast. The walking method 

employed in this paper is presented in the Fig.3. First we can get the feasible footholds and 

compute the ZMP values based on the foot-planning module. Subsequently, the trunk 

trajectory of robot can be attained based on a linear inverted pendulum model (LIPM) with 

a predictive control method. As a result, we can plan the space trajectory of every two 

footholds in 3D space according to the cubic spline interpolation method. Meanwhile, each 

joint angle can be calculated according to inverse kinematics method. The pose of the 

robot’s trunk can easily computed by the gyro sensor of NAO. Last but not least, we use 

machine learning algorithm to optimize the walking parameters. 

 

5 Kicking Design Motion 

We presented kicking design motion of humanoid robots using a gradual accumulation 

learning method which based on the Covariance Matrix Adaptation Evolution Strategy 



(CMA-ES). By planning the best kicking point and the foot space motion trajectory, which 

is on  the basis of linear distance after kicking and the time cost about kicking point as the 

target , the first layer of learning optimization can be realized. Afterwards, the double 

balancing mechanism of the robot’s center of the mass and the gyroscope sensor feedback 

was employed to fulfill the optimization of the next layer. The ultimate learning goal was 

the overall consideration of the football contact point selection, the weighted penalty of the 

ankle joint and the performance of kicking. In general, Apollo3D adopted the 

above-mentioned kicking mechanism, not only keeping the stability of the robot but also 

ensuring the kicking distance and angle.  
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Fig. 4 The kicking flowchart 

CMA-ES progressive accumulated optimization method is used for each joint angle 

values under series of specific kicking motions. Parameters involved mainly include the 

three-dimensional coordinate values and the rotation, yaw and roll angles of the foot joint of 

the specific point on the curve of Kicking, the robot’s best kicking point in three kicking 

ways ,the distance from the ball of the foot and the ball contact angle. Specific process is 

shown in Fig.4. 

 

6 Hierarchical Decision Making 

The team size of RoboCup 3D growth from 6 in 2010 to 9 in 2011, and finally 11 last 

year, which raised the concern of better multi-agent corporation. Increased the number of 

players though, the robot who is on the ball is unique for any single moment. So far, 

distant passing skills between robots are still impractical for most teams, how the dribbler 

control the ball becomes the key to win a game.  
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Figure 4.Flow chart of assigning roles 

The dribbler, called the Hero role in our model, bears the heaviest burden in a 

competition. In the tactic of Apollo3D, agents first select a formation according to the 

position of the ball, then choose a Hero. Since the vision of agents is restricted, and it has 

errors that every agent’s perception of self and other players’ locations, multiple Heroes 

may appear at the same time, causing chaotic collisions around the ball, which brings 

negative effects on controlling the ball. To solve this issue, we employed a voting 

method to select the best Hero, using the communication system to synchronize each 

agent’s selection. Since it has time delays in the communication system, and agents cannot 

100% sure about its selection, we gives each vote a weight describe by a probability value 

between(0,1) .  

When the Hero is dribbling, we make sure that every other player stay on a ascendant 

position to assist attacking. Each role (or position) is assigned according to the robot’s 

location in the current formation. Meanwhile, we also have to synchronize other roles 

among agents, to prevent potential risk of collision and keep the order of attacking.  

Here we use the following criteria for choosing the Hero:  

• Whether the player is fall down. 

• Whether the ball is visible to the player. 

• Player’s distance to ball. 

• Whether the player is in front of the ball or behind it (players in front of the ball 

often need extra time for turning). 

• Whether the player is goalie (competition rule stipulated the goalie has to be NO.1).  

• Whether this player is Hero in last cycle. 

 

7 Conclusion 
In this paper, we discussed algorithms in biped robot localization, walking and 



multi-agent corporation. We proceed a large amount of experiments, and the results 

validated the reliability and superiority of these algorithms. Research on humanoid 

robot has gained popularity in Robotics, many researchers and engineers focus their 

research on this field. Our further work will focus on studying the strategy of the 

multi-agent cooperation and confrontation. 
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