CrudeScientists Team Description

N. Micheal Mayer!, Alan Liu!, Chia-Hao Hsieh!, Chun-Ming Chen',
Hsien-Chang Lin', Jheng-You Lin!, Jia-Heng Zou®, Juris Klonovs!,
Meng-Xuan Jia!, Pin-Chih Lin!, Tsung-Lin Kuo!, Wei-Lien Sung', Yu-Hua
Xiao', Joschka Boedecker?

'National Chung Cheng University, Chia-Yi, Taiwan, R.O.C.
20saka University, Osaka, Japan
email: mikemayer@ccu.edu.tw

Abstract. We implemented the Harmonic Motion Description Protocol
(HMDP) as a module into SimSpark. Initiallyy, HMDP was developed in
real robots. It served there as a framework for the communication be-
tween the behavior system and the real time motor controller. In case
of SimSpark it serves for the same purpose between the agents (clients)
and the server. Thus, it is possible to upload pre-designed motions be-
fore the game starts. The superponability of those motions allows for an
infinte set of possible motions. We see several advantages of HMDP in
contrast to the current usage of the effector control and thus suggest to
add the HMDP module to the standard competiton server. In addition,
we provide a tool for motion design, of which we add the sources to the
present competition contribution.

1 Introduction

One important feature of SimSpark is its extensibility using dynamical loadable
plugins that can contain sensors and effectors. In our contribution we present
a plugin that basically runs on software for motor controllers. The very same
software had been implemented in real robots before; the first robot has been a
Vision 3G robot of VStone Inc. in Osaka. The design of the 3G robot is typical
for robots that participate at the RoboCup Humanoid League and resembles
also the design of the Nao robot of Aldebaran robotics: It consists of 2 CPUs
(excluding the very small embedded systems on each servo motor): While vision
processing and higher level behavior control are done by the first CPU, real time
motion processing is done by the other one. Both communicate over serial bus
with each other.

The task of the motor controller CPU is to react on abstract motion commands
and translate this in a real-time sequence of postures that are send in precise
timing to the servo motors. The implementation of the Harmonic Motion De-
scription Protocol (HMDP) has been suggested earlier [1][2] as a flexible software

on the motor controller side. The parsing of the messages and the execution of
the resulting trajectories has been implemented by using a self-sufficient C-code,
that does not require external libraries and even refrains from using float type
variables because those require external libraries in some CPUs for embedded
systems. One important feature of HMDP and the underlying motor controller
software is that several motions can be linearly superposed on top of each other
and thus parametrizable motions can be created. In addition, several libraries
have been programmed that support the communication on the client side. Last
but not least a motion design tool with a GUI has been programmed that is
called Qmotion2.

The implementation of HMDP into SimSpark had also been suggested earlier as
part of the 3D2Real project [3]. The current contribution is that we have actually
implemented HMDP including the above mentioned —though further developed—
self-sufficient C-code. The role of the motor controller part is performed by the
plugin, while the external client communicates over an effector and perceptor
class with the module. The code is encapsulated in a namespace. Global data
entities that contain information about motion patterns, timing and others are
comprised in 2 structures, that have to be instantiated once for each agent that
is connected. At present the HMDP parts have been added to module soccer.so
in the rcssserver3D part of SimSpark.

SimSpark/HMDP have successfully been used in a class about open source soft-
ware for and in embedded systems. The students were able to very quickly design
motion patterns such as standing up of the robot and walking. They were able
to create parameterizable motions and search the parameter space for optimal
motions (e.g. as fast as possible walking). A report about their progress has been
added to the contribution material.

2 HMDP

The name HMDP originates from the fact that —instead of a sequence of postures—
harmonic functions (i.e. several cosine and sine functions) are used to describe
motions. In this way both repetitive motions (walking) as well as non-repetitive
motions are possible. Non-repetitive motions are realized in the way that a start
and a stop point are given, also a slow fade in and fade out of a motion is
possible. Finally, the motions can be run with different amplitudes. Thus, by
superposing several motion patterns with different amplitudes, a parametrizable
motion can be created, in which the amplitudes of the underlying motions serve
as parameters of the resulting motion of the robot. In this way parametrizable
motions can be designed in standard way: First one extreme example is designed
by hand (e.g. walking on spot) and then another extreme example (e.g. walk-
ing as fast as possible forward), provided that both motions use the same base
frequencies, and further constraints, a parametrizable motion between these 2
extremes can be achieved by superposing those with the first motion having the

§‘ 1. Usage of a single pattern
PU <
o A ’—‘
£| | Motion 3
A ’—‘
Motion 2
e]
Py < J >
2. Sequence of motion patterns
s 3 A ;
Motion 3
| A
Motion 2 -
" YO e
o Time

3. Superposition of motions

Fig. 1. Left: HMDP commands for different usages of the motion patterns. The PU
command (for the HMDP syntax refer to the above mentioned publications) can
trigger a motion pattern with end. PY triggers the motion pattern without giving a
point in time for the end. The PP command is for testing and starts a motion pattern
immediately without end. Right: Examples for possible implementations of motion
patterns. The third example is making use of the superposition principle.

amplitude o and the second having the amplitude 1—«, where « is value between
1 and 0. Please refer to Fig. 1 for more useful applications of this feature. For
optimization algorithms (as —for example — genetic algorithms or reinforcement
learning) we see also advantages if HMDP is used: Instead of an optimization
for every time step on every joint, now by using HMDP an optimization of a
set of pre-defined motions can be chosen. Thus, the dimensionality of the search
space can be significantly reduced. Reinforcement learning on motion patterns
can become a fairly feasible task.

The syntax of HMDP allows to define a motion and transfer it once to the
server-plugin and then use it for an infinite number of times. This is in several
ways an advantage to the standard way in which the joints are controlled by
the SimSpark client up to now. Thus, HMDP allows for pre-designed motion
patterns to be transferred to the server before the game starts. Since during the
competition most teams have a finite fixed repertoire of motions for standard
situations (walk, stand-up, kick etc.), HMDP fits the needs of these teams very
well: The teams can upload all the motions they plan to use before the game
starts and then activate or deactivate these motion patterns as they like during
the game. We see advantages in the reduced load of communication between
server and client during the game, and the higher precision in which motion
patterns can be realized.

Synchronization between the client and the simspark server has been an issue
for the designer of the server in the past. If HMDP is used as a layer for motion

abstraction the client can be much more independent from the timer in the
server.

Provided that the HMDP-software has been implemented on a real robot, motion
patterns become exchangeable between the particular model of the real robot
and the simulated robot. This may prove useful to test in the future the quality
of simulations.

3 QMotion2

The motion design tool Qmotion2 (see Fig. 2) has been added to the source
code of the present contribution including a detailed manual. The tool connects
as a client to the HMDP server. It can connect to a server over both serial bus
and a SimSpark TCP/IP connection. A motion is first defined as a sequence of
postures. If a real robot is connected the posture can be modelled on the robot
and then the position of each servo can be read into Qmotion2. For testing
single postures can be transmitted and checked — either in SimSpark or the
real robot. The set of sine and cosine waves (i.e. their frequencies) can be set
by putting frequency pointers on the window. Choosing more frequency pointers
results in a more precise interpolation of the set of postures given, less frequency
pointers with small frequencies result in a smoother but less precise interpolation.
Advanced tasks as standing up can still be achieved by trial and error. Since
Qmotion2 bases on Qt3 and also at present it has only been implemented in
Linux, a port to other operating systems seems easily possible. Designed motion
patterns can be stored in binary files. QMotion also provides tools for setting a
start and and end point for non-repetitive motions (as standing up) and finally
symmetry constraints can be added for periodic motions in that way that motions
of the left side are repeated after half a period of the base frequency on the right
side and vice versa. This makes the design of walking easier.

4 Adding motions designed by QMotion2 into the own
source code

Each motion pattern is encoded in capital letters and hexadecimal numbers. The
HMDP commands that are necessary to define a motion pattern can be added
by cut and paste into own C-code from the output of QMotion2. An example is
provided in a small additional source code has been added for illustration.

5 Outlook and Discussion

The advantage of the described method to previous designs is that in comparison
to streaming of robot posture information the communication load can be re-

simSpark
EditFile © QMOTIONZ2 (1st half) BeforeKickOff t=0.00
1264 1359 1454
. . . .
HE11-P HE11-P HE11-P
HE12-Y HE12-Y HE12-Y
RA11+P RAT1+P RA11+P
RA1Z2-R RA12-R RA12-R
RA13-Y RA13-Y RA13-Y
RA21-R RA21-R RA21-R
LA11+P LAT1+P LA11+P
LA12-R LA12-R LA12-R
LA13-Y LA13-Y LA13-Y
LA21-R LA21-R LA21-R
RL114PY RL11+PY RL114PY
RL12-R RL12-R RL12-R
RL13+P RL13+P RL13+P
RL21+P RL21+P RL21+P
RL31+P RL31+P RL31+P
RL32-R RL32-R RL32-R
LL11+PY LL11+PY LL11+PY
LL12-R LL1z-R LL12-R
LL13+P LL13+P LL13+P
LL21+P LL21+P LL21+P
LL31+P LL31+P LL31+P
LL32-R LL32-R LL32-R
[
.00
E— PT ~/course materials/e|] o] X oTdsunG@oas.
- | Gle Edit View Termini | fabs el Ele Edit View Terr
e | >P140660 [~|]ing time: .138
i I |
[=]-[@ olds... || sim [disk ... |3 gmo... || 1 [amo... | &F =]
»Q Applications Places System T Mon May 4. 10:02 M | oldsung [§ .,[2 @ Foas

Fig. 2. Example for Qmotion2 used together with SimSpark. The x-axis in the Qmo-
tion2 editor window represents time. The vertical black line with the dots represents
the state of the robot at the time which is expressed in the number that is printed
above the line. Each dot on each line represents one servo. The value of each servo can
be seen and modified by mouse clicks. The widgets below allow to change the ampli-
tude with which the motion pattern should be activated. Finally, the communication
is displayed on the widget below and in the widget at the bottom of Qmotion2 editor
window own HMDP commands can be written by hand and sent directly.

duced. At the same time motion design and management are still highly flexible
(all kinds of parameter motions are possible). One important disadvantage to a
standard control program on the motor controller is that closed loop approaches
are more complicated to implement. It is nonetheless possible. A specific ex-
pected perturbation can be treated by a compensating motion pattern. Thus
the control loop can look as follows: At a specific phase a sensor reading is exe-
cuted. In the case of alarming sensor values a healing pattern can be activated
in an appropriate amplitude. In this way although the feedback delay may be
relatively large, the reaction precisely fits into the motion pattern.

Recently Python has started to be a new standard as a high level language.
Powerful libraries (for example PyBrain [4]) for learning and adaptation are
available. Thus, a Python interface to SimSpark (via HMDP) could be very
useful.

Acknowledgements

The authors thank the Taiwanese National Science Council, the Swiss National
Fund (SNF) and the Japanese JSPS and JST for their financial support. We
also would like to thank K. Hwang, J. Schmidhuber, M. Asada, H. Ishiguro, K.
Masui, S. Fuke, R. Silva da Guerra, and M. Ogino.

References

1. Norbert Michael Mayer, Joschka Boedecker, Kazuhiro Masui, Masaki Ogino, and
Minoru Asada. HMDP: A New Protocol for Motion Pattern Generation Towards
Behavior Abstraction. In Ubbo Visser, Fernando Ribeiro, Takeshi Ohashi, and
Frank Dellaert, editors, RoboCup 2007: Robot Soccer World Cup XI, Lecture Notes
in Artificial Intelligence. Springer, 2008. to appear.

2. N. Michael Mayer, Joschka Boedecker, and Minoru Asada. Robot motion description
and real-time management with the harmonic motion description protocol. Robotics
and Autonomous Systems, 2009. to appear.

3. Norbert Michael Mayer, Joschka Boedecker, Rodrigo da Silva Guerra, Oliver Obst,
and Minoru Asada. 3D2Real: Simulation League Finals in Real Robots. In RoboCup
2006: Robot Soccer World Cup X (Lecture Notes in Computer Science) (Paperback)
by Gerhard Lakemeyer (Editor), Elizabeth Sklar (Editor), Domenico G. Sorrenti (E
ditor), Tomoichi Takahashi (Editor), pages 25-34. Springer, 2007.

4. IDSIA. Pybrain: The python machine learning library. http://pybrain.org, 2009.

