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Abstract. We aim at systematically developing a battery of principled
methods to generate behaviours useful to achieve a viable RoboCup 3D
gameplay.

The construction of basic skills in humanoids is usually an intricate busi-
ness that requires a large amount of hand-tuning. We aim to develop a
systematic path towards reducing this amount of handtuning both on
the perception as well as the actuation side.

We approach this by combining principled methods, many grounded in
information-theory, some in well-known Kalman- and particle-filtering,
as well as hand-coded components. The long-term goal is to ultimately
replace the hand-crafted structuring of the code by learnt frameworks.
This Team Description Paper discusses the aspects we concentrate upon
for Bold Hearts 3D 2009.

1 Base and Locomotion

Team Bold Hearts has competed in the RoboCup Soccer Simulation league since
2003. The first two years the team participated in the 2D competitions, in 2005
it joined the 3D community. At the beginning of 2009 a full restart of the team
was initiated, after attracting Sander van Dijk to the team, former member of
the succesful team Little Green BATS1. To get the Bold Hearts up to steam
quickly, the new code is based on the libbats library released by the Little
Green BATS2.

For the match of which the logfile is submitted as qualification material for
the 2009 world championships at Graz a simple, semi open loop oscillator model,
based on [15] and similar to that released by the Little Green BATS, is used as
a gait generator. To achieve a bit more stability, the agent’s torso is turned in
the direction of movement:

f = min(
v(t)
vmax

aforward(t)
aside(t)

, 1) (1)

θ(t) = fθmax, (2)

1 See http://www.littlegreenbats.nl/
2 See http://www.sourceforge.net/projects/littlegreenbats/



where v(t) is the agent’s velocity at time t, vmax its maximum velocity, a its
acceleration, θ(t) the added torso pitch and θmax the maximum torso pitch.

At the moment we are working towards close loop controllers and full body
stability, based on stability measures like the Zero Moment Point and Foot-
Rotation Indication Point [4] and Angular Momentum [5].

2 General Approach

Learning, specifically reinforcement learning, has been part of the RoboCup
endeavour for a long time [20, 18, 1, 14]. Reinforcement learning methods are of
interest because of their generality and mathematical grounding. They are also
quite successful in nontrivial problems [19]; in conjunction with kernel methods,
they can address even larger problems in a highly efficient way [2, 10, 9, 8].

Still, the problems to address are quite large (and large-dimensional). How-
ever, realistic embodied agents offer a selection of possible partial decompositions
[7]. There is significant indication that Shannon information can be a powerful
indicator of where “interesting” properties of the environment lie. The use of
information-theoretic (or information-theoretically motivated) decompositions is
a natural while computationally expensive approach. [3] It has been shown that
it can lead to self-organized feature extraction [12], sensoritopic map formation
[16], or identify interesting states in state space [13].

Here, we have several tasks for which we will use informational approaches.
The new server dynamics will introduce limited vision and noise. Part of it will
be covered by conventional Kalman- and particle-filter approaches. However, we
intend to use novel informational principles to address the active-vision task
imposed through the limited vision. For this, we will use the novel Infotaxis
principle [21] to guide actions to identify objects of importance, ball, goal and
other players. Section 3 will give a formal description of our use of this principle
in localization, the first use of it in robot control, and the research we will follow
after this first step.

3 Active Vision Through Infotaxis

One of the new challenges for the 2009 Robocup 3D Simulation teams are the
restrictions placed on the vision sensor. The last two years the simulated robots
were equipped with perfect 360-degrees omni vision cameras, making the envi-
ronment fully accessible. From this year, however, a restricted vision sensor is
introduced, similar to that used in the spheres version of the simulator until
2006. This sensor has a range of 120 degrees on both the horizontal as the ver-
tical axis and supplies noisy data about the objects within its field of sight. The
next sections describe ways we use and directions of research to handle this new
challenge.



3.1 Localization

We supply the agents with a localization mechanism that maintains their global
location in world coordinates. Many tasks can be achieved with only relative
position information, for instance to kick the ball into a goal the relative position
of the agent to the ball and to the goal is enough. Global coordinates however
make it easier for the agent to deduce more about the world, like the trajectory of
the ball and whether the team is in an attack or defence situation. In this section
we will describe the Kalman filter localization method, a traditional method used
to solve prediction problems, as described in [11] and [23].

With this method, the agent’s estimated location is described by a multi-
variate normal distribution N(x,Σ) with means x, here a 3-dimensional vector
depicting the agent’s x, y and z coordinates in the field, and covariance matrix
Σ. After each time step this estimate is refined in two steps: first a prediction
is made based on the dynamics of the environment and the agent’s actions,
secondly this prediction is updated by integrating observations.

Predict In the prediction step at timestep k the mean xk|k−1 and covariance
matrix Σk|k−1, where (·)k|l means ’at timestep k, given all observations up to
and including timestep l’, are determined as follows:

xk|k−1 = Axk−1|k−1 + Buk−1 (3)

Σk|k−1 = AΣk−1|k−1AT + Q (4)

where A is the state transition model relating the state of the previous timestep
to that of the current timestep, uk is the control vector at timestep k reflecting
the agent’s actions and Q is the process noise.

For now we assume A = I, where I is the identity matrix, indicating that
there is no effect on the agent’s location besides its actions. Later on this can
be extended by appending the agent’s velocity to x. Also, the input control is
defined in world coordinates, so B = I. This results in the simplified equations:

xk|k−1 = xk−1|k−1 + uk−1 (5)
Σk|k−1 = Σk−1|k−1 + Q (6)

Update The update step uses observations of landmarks at the current timestep,
zk, to refine the estimate:

Kk = Σk|k−1HT (HΣk|k−1HT + Rk)−1 (7)
xk|k = xk|k−1 + Kk(zk −Hxk|k−1) (8)
Σk|k = (I−KkH)Σk|k−1 (9)

where H is the observation model relating an observation to a location world
coordinates and Rk is the observation noise covariance matrix. K is the gain or
blending factor that minimizes the a posteriori error covariance. Note that the



observation noise model depends on the current timestep, since the noise when
observing far away landmarks is larger than with nearer objects.

The observations are defined in the global coordinate system, so H = I,
resulting in the simplifications:

Kk = Σk|k−1(Σk|k−1 + Rk)−1 (10)
xk|k = xk|k−1 + Kk(zk − xk|k−1) (11)
Σk|k = (I−Kk)Σk|k−1 (12)

3.2 Information Gathering

As mentioned in the previous section, an observation consists of agent coordi-
nates in the global coordinate system. These are obtained through triangulation
or trilateration of the observed locations of two landmarks. It is clear that when
the agent sees more landmarks, the location estimate becomes more accurate. If
the agent for instance sees 3 landmarks, it can make 3 combinations of these and
thus 3 observations of its location in one timestep. However, it also means that
if the agent is looking the wrong way it may only see one landmark or even no
landmark at all, making it impossible to perform the update step. The question
then comes up if the agent can optimize its information gathering to make its
localization as accurate as possible.

To do this we will use the infotaxis strategy which ‘locally maximizes the
expected rate of information gain’[22]. The information gain resulting from an
observation can be measured by the decrease of the entropy H(f) of the distri-
bution f(x). In our case of multivariate normal distribution we have:

f(x) =
1

(2π)N/2 |Σ|1/2
e−

1
2 (x−µ)>Σ−1(x−µ) (13)

H(f) = −
∫ ∞
−∞

f(x)log(f(x))dx (14)

= log
(√

(2π e)N |Σ|
)
, (15)

where N is the number of dimensions, in our case N = 3.
The problem we need to solve is which action a ∈ A of the possible actions

A to take to maximize the decrease in entropy:

ak = arg max
a

−∆aH(X) (16)

= arg min
a

H(X)k+1|a −H(X)k (17)

= arg min
a

H(X)k+1|a (18)

= arg min
a

log
(√

(2π e)N
∣∣Σk+1|k+1,a

∣∣) (19)

= arg min
a

∣∣Σk+1|k+1,a

∣∣ (20)



= arg min
a

∣∣I− (Σk|k + Q)(Σk|k + Q + Rk+1|a)−1
∣∣ (21)

3.3 Future Directions

There are several ways to continue from here and multiple problems we are or
will be researching. Firstly, the choice of set of actions A is important to get
the best results. If for instance it consists of ‘turn head n degrees left/right’ the
agent may focus on a single set of landmarks, unwilling to sweep over empty
areas, even though that may lead to observing better landmarks.

Secondly, vision is not only used for localization of the agent. What for in-
stance is probably even more important in football is thelocation of the ball. A
tradeoff has to be made on which target to focus, e.g. by limiting A to actions
that will not loose sight of the ball or by alternating between the targets based
on the current value of the information about each to the agent. To optimize
the latter case we will use another information theoretical principle, relevant
information, which measures the amount of information present in a random
variable that is relevant for an agent’s optimal strategy [17]. This amount gives
an indication which variable should get more attention.

Finally, there are other localization methods we will test, that can outperform
the Kalman filter, like Monte Carlo/particle filters (see for instance [6]). Most
importantly, these filters can represent distributions that are more complex than
a normal distribution, and thus can integrate the information of the observation
of a single landmark. Also, they handle sudden relocations better, which happen
regularly during a match. Further research is planned to see if the infotaxis
principle can be applied to this kind of filters.
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