
Description of the Team Virtual Werder 3D 2004

Tjorben Bogon, Mirco Kuhlmann, Cord Niehaus, Steffen Planthaber, Carsten
Rachuy, Arne Stahlbock, Ubbo Visser, and Tobias Warden

TZI - Center for Computing Technologies, University of Bremen, Germany
grp-vw3d@tzi.de

WWW home page: http://www.virtualwerder.de

Abstract. Virtual Werder 3D is a new team, which has been developed
based on the test agent given in the package. Right now, the team has the
same architecture but a different behavior than the simple client. This in-
cludes a new formation method and some additional basic functions such
as slow down, positioning, and move around ball in the play on mode.
Future work includes the integration of planning and plan-recognition
components as well as other MAS components such as a deliberation
module and reactive components.

1 Introduction

Programming robots in dynamic environments under real-time conditions re-
quires heterogenous information from various sensors or sources. The majority
of the sensor data are quantitative. However, we identified qualitative knowledge
to be also crucial, especially in environments where time is an issue. One part
of this qualitative knowledge is spatial knowledge.

We intend to integrate our team Virtual Werder 3D into our general multi-
agent model which is based on both quantitative and qualitative information.
We will use a formal, egocentric, and qualitative approach to navigation which
overcomes some problems of quantitative, allocentric approaches. By the use of
ordering information, i.e., based on a description of how landmarks can shift and
switch, we generate an extended panoramic representation. Since our approach
abstracts from quantitative or metrical detail in order to introduce a stable qual-
itative representation between the raw sensor data and the final application, it
can for example be used in addition to the well-elaborated quantitative methods.

The following sections are organized as follows: firstly, we will give insight
into the new basic functions (skills) that we have implemented so far. These skills
are necessary for our approach that we will draw in the succeeding sections. We
will describe our future architecture with its components.

2 Basic implementation

The following implementation details form one part of the basic functions that we
need for our overall approach. The next subsections give an overview about the
development and changes that we have done so far. This includes a development
before kickoff and behavior changes while the play is on.



2.1 Formation

Our agent implements three functions which are concerned with the position of
the agents in the general team lineup.

The method getHomePosition() acts as a kind of control function which
delegates the actual task of calculation of the correct home position of any agent
to two other function explained further below according to the game state. Each
of these functions return a position for the current agent based on its tricot
number (e.g. agent no. 1 is the goal keeper).

Before kickoff the function getStartUpPosition() returns a startup position
which is characterized by the fact, that no matter which tricot number has been
assigned to the current agent the position can be located somewhere within the
own half of the field. This means that the startupPosition is somewhat defensive.
When the game is in another state the function of choice is getLineUpPosition()
which returns the position of the agent in the actual team lineup (e.g. goal,
defense, mid-field, forward).

At the moment we only implemented the getHomePosition() function to be
called before kickoff with the result that all agents are set on non-standard
positions in regard to the test-agent.

2.2 Basic skills

The following methods have been implemented:

Slow down: We implemented a function which slows down the agent when ap-
proaching a given destination point. Using this function before kicking the ball
the agent slows down which prevents him from being to fast and therefore stum-
bling across the ball.

Moving around the ball: This function enables the agent to move around the ball.
It is used if the kickoff-position lies ”behind” the ball (relative to the agent). This
results in the agent making a circle around the ball instead of running against /
stumbling across it.

Positioning: This function checks whether the agent is in the correct position
to kick the ball into the opponents goal12 For this calculation the agents uses
the vectors pointing towards the left goal-flag, the right goal-flag and the ball,
relative to the agent himself. This results in the agent kicking the ball only if
the goal can be hit which is significantly better than just kicking if the agents
distance toward the ball is below the minimal kick-distance.
1 Due to the fact that the agents start on the opponent’s side of the game-field and we

did not notice this on time our agent’s behavior is somehow ”flipped”. That means
that the agents are playing towards their own goal and not the opponent one.

2 Our agent uses (by now) the myPos-Value, therefore it has to be enabled for our
team.



Fig. 1. The three knowledge levels

3 Architecture

The architecture of VW3D can be distinguished in two levels: the knowledge
level and the processing level. The knowledge level describes the knowledge we
need to describe strategies, tactics, and plans in the soccer domain. Please note,
that these levels could vary in another domain. The processing level describe
processes that operate with this kind of knowledge to derive concrete plans for
the agents.

3.1 Knowledge level

We follow the intention to formalize soccer knowledge from an experts point of
view. We consider three parts in the knowledge level (cf. figure 1) which are the
following:

– Strategies
– Abstract tactics
– Concrete tactics/concrete plans

The strategic level includes knowledge about major strategies such as offensive
or defensive play, formation etc.. It is the highest level and knowledge form this
level will be used for the whole team only a few times during a play (e.g. 4-4-2
formation).



The next level is the level of abstract tactics which are dependent upon the
strategies. This is the level of group behavior where we can see tactics about
certain defenses (e.g. last defense line) or certain wing counter-attacks. These
tactics are translation-invariant which means that certain tactics can be applied
regardless of the position of the group members. An example for this is the offside
trap, which can be applied anywhere on the field. An abstract tactic also includes
potential roles of players. If we would have a fast left-wing counter-attack for
four players, for instance, we could play this counter-attack with one defender,
two mid-fielder, and one attacker. This however is only one variant, the actual
instantiation might look different on the concrete plan level.

The concrete tactics level is the level where the variants of the abstract tac-
tics are being solved. One example for this is a fast counter-attack (left or right).
We will have two branches with concrete instantiations for every abstract role
description. One example might help: suppose we have one strategy and one ab-
stract tactic (fast counter-attack). We could have three different role descriptions
for this abstract tactic with two or three concrete instantiations. This results to
nine concrete combinations for the game. We can play left or right with each of
the nine variants, i.e., a simple counter-attack results in 18 different variants.

The goal is a graph which can be used for execution.

3.2 Processing level

The following figure 2 shows the modules that are necessary to implement the
mentioned features. These modules are basically the same for each knowledge
level, only the outcome of each module varies with respect to the knowledge
level.

Fig. 2. Processing levels of VW3D

The planning module uses the knowledge that is contained in the plan knowl-
edge base to generate plans. Suppose we are on an abstract tactics level. The



planning module would generate, e.g. three slow counter-attacks and four fast
counter-attacks based on different role instantiations. A merging component that
is included in the scheduler, takes those plans and identifies possible merging
opportunities. The purpose is to reduce the number of plans and therefore com-
plexity. The deliberative component takes this outcome and selects between the
possible plan variants. The outcome in our example might be the second fast
counter-attack. The reactive component takes this plan and executes it.


