
Abstract

The RoboCup Simulator League provides an excellent platform for research on swarm
computing. The University of Virginia RoboCup team is interested in how group
behaviors emerge from collections of actors making decisions based on local information.
Our Wahoo Wunderkind simulator team is designed for experimenting with behavioral
primitives defined over groups and mechanisms for combining those behaviors.

Introduction

A fundamental challenge for computer scientists over the next decade is to develop
methods for creating, understanding, and validating properties of programs executing on
swarms of communicating computational units. The key difference between swarm
programming and traditional programming is that the behavior of a swarm program
emerges from the total behavior of its individual computing units. Unlike traditional
distributed programming, swarm programs must deal with uncertain environments and
mobile nodes. The scientific challenges of swarm computing are to understand how to
create programs for individual units based on the desired behavior, and conversely, how
to predict high-level behavior based on the programs running on the individual computing
units.

We began the Wahoo Wunderkind FC during the summer of 2001 for the RoboCup 2001
competition. In the spring of 2002, we continued development with the inclusion of fifteen
new undergraduate students. Over the summer of 2001, we concentrated on developing
a modular architecture for experimentation using the principles of swarm programming.
Recently, our team has researched methods of combining actions, methods of using
learning methods to incorporate noisy data into the player’s world model, methods of
simulating the world to account for the infrequency of sensor data, methods for players to
interpret the world using different simulation levels of detail (SLOD), and more complex
actions. Originally, we began with source code from the Mainz Rolling Brainz Team from
the 2000 competition because it was well documented, freely available, and modular in
design. Our team is based on a clear modular structure, uses a MasterControl which
has a WorldModel, a Body to execute Actions, and a facility to evaluate
recommended actions from many Behavior modules.

Swarm Programming

Our work focuses on creating and reasoning about swarm programs in principled ways.
We believe these programs are best implemented by combining primitives defined over
groups of agents. We are developing a library of primitive operations for swarm
programs. A primitive defines a functional behavior of a swarm of devices, such as
“disperse” or “flock”. These primitives are described formally in terms of constraints on
the state of the devices in the swarm. For example, disperse has the constraint that no
two devices are within a certain distance. In addition to functional behavior, non-
functional behavior of an implementation of a primitive is formally described. With
respect to robot soccer, this technique captures uncertainty in the agents’ environments,
resilience to malfunction of other agents, and unpredictability of opponents’ actions.

We are investigating different mechanisms for composing swarm primitives to create new
behaviors. The goal is to reliably predict the properties of the resulting program. In
addition, we hope to synthesize programs by combining primitives with known functional
and nonfunctional properties. We will take a functional description of a swarm program
along with formal models of its execution environment and devices, and select a
combination of primitive implementations from a library based on the desired properties.

Architecture

Our agent consists of a WorldModel, Body, and Behaviors, where each Behavior is
implemented as a module. MasterControl has a three-part architecture, divided into
listen, think, and act. Listen takes sensory data received by the agent through the
Body and inserts the data into the WorldModel. Think loops over each Behavior,
determines the behavior’s usefulness and then returns a recommended Action. Act
commands the body to execute a recommended action.

WorldModel stores all the information that comes from the server in an object oriented
format. The objects in the world have attributes such as position, velocity, and age. The
world model can be logged in an XML format for debugging with a replayer. The
flexibility of XML allows the future development of more complex debugging without
deprecating our existing replayer that was based on the MRB replayer.

The Body represents a layer of separation between the higher order control and the
simulated robot. The body has the ability to execute a complex action and return sensor
information from the server. All commands sent to the server pass through the body.
This structure proved useful for debugging, since it allowed us to isolate unusual behavior
by distinguishing between commands that were generated improperly and commands
that were never sent. Additionally, this structure will allow our design to support a future
implementation on physical robots.

Behavior Modules and Perceptions

A behavior module consists of a behavior, perception, and a recommendation. Each
behavior represents a primitive desire or action such as dispersing, centering, or pushing
up on the ball. Some behaviors are designed to establish and maintain global properties
of the team. For example, disperse strives to maintain the property that no two players
are within a certain distance of each other. Other behaviors deal with special situations,
often associated with the closest player to the ball, such as passing or shooting. Each
behavior has two main methods, one to determine its usefulness and the other to
generate a Recommendation. A behavior uses perceptions to view the world model in
different levels of detail. The check for usefulness is done to eliminate unnecessary
calculations. For example, if a player does not have the ball, it need not calculate the
best direction to kick. If a behavior is useful, additional perceptions are used to calculate

information about the world state in order to calculate parameters for the suggested
action.

A perception is a collection of functions that operate on the world model to interpret the
state of the game. The complexities of different perceptions vary considerably, from
merely checking the play mode to performing intercept calculations. The Perceptions are
written as utility libraries, so that multiple behaviors can share perceptions. If efficiency
becomes a problem, we intend to implement a caching facility in the perceptions.

The Recommendations from each module are compiled into a list and returned to
MasterControl. MasterControl then uses combination logic, based on the
principles of swarm programming, to select the best recommendation, and thus the best
behavior for a particular situation. The ActionList from the winning recommendation
is sent to the body to be transmitted to the server.

Recommendation and Action List

The recommendation produced by each behavior module contains a grade and an
ActionList. An action list is a list of actions to be executed in one server cycle.
Currently, a Grade is implemented as a floating point number ranging between 0 and
100. A grade of 0 represents impossibility, while a grade of 100 forces a specific action.
For example, when the goalie judges that it can catch the ball, it forces the catch, even if
another module such as center recommends the goalie move to the center of the box. If
two modules return recommendations of 100, the one that was returned first wins.

All of our actions have an associated duration. For instance, the kick command takes a
complete server cycle, so the Kick Action’s duration is one. Turn Neck’s can be sent
more than once per server cycle, hence, they have a duration of zero. We have
successfully implemented a combination method that will strip the zero-duration actions
out of losing Recommendations and append them to the winning Recommendation. One
result of this combination is that a player can dribble the ball up the field and turn his neck
to be sure the ball stays in his line-of-sight. This is significant because the
DribbleBehavior and the ScanBehavior are strictly independent.

Strategy

We put most of our efforts into developing a defense. The principles of swarm
programming proved to be very useful in balancing the various requirements of a
defensive player. We have independent modules that seek to establish different, often
conflicting, properties. For example, don’t be too close to teammates, center on the ball,
try to push the offside line up the field. Vector summing is an effective tool for combining
defensive positioning behaviors.

Programming the offensive objectives of a soccer agent with swarm programming
practices presents some new challenges. Swarm programming is best suited to large
numbers of relatively simple actions. For the commands accepted by the soccer server,
this is an excellent application. However, an attack on goal by a single player is best
implemented as a complex set of conditionals, usually including a long list of actions to
be executed sequentially. Behaviors of this type have a unique structure, and present a
particular challenge in the development of combinational methods. We are investigating
how behavior based control can be combined with long range planning.

Level of Detail

Currently, we are researching methods to extrapolate strategic and high level information
about the world and methods of directing all of the players at an individual level. One
technique of utilizing higher-level information about the world and enabling players to
work and reason as a group is simulation level of detail (SLOD).

SLOD will allow us to effectively control groups of soccer players as they coordinate and
compete in a complex environment. The technique builds abstractions to represent the
limitations of a player’s maneuverability and passing ability. Low-level, individual,
abstractions are built using such data-centric methods as principle components analysis
and temporal differencing. A hierarchy of SLODs, developed using optimization methods
and heuristics, allows us to describe individual players and even groups of players in
progressively simplified ways. These simplified versions of players expedite the
evaluation of strategy search algorithms and provide a common framework for describing
heterogeneous agents. The shared player description framework allows higher levels of
control to abstract the implementation details of lower levels, thus supporting reusability
and interchangeability. For example, a defensive strategy that entails a lot of movement
from the defenders need only evaluate the energy level of the defensive players (a simple
SLOD) without considering the overall state of each defender. Likewise, the lower levels
of control for the defensive players will use more detailed SLODs to partition the
defensive portion of the field among the individuals. SLODs fit well with swarm
programming as we can consider swarm primitives that operate at different levels.

It is difficult to analyze one component of a soccer agent without compensating for a
large number of external variables. The implementation of simulation SLOD in our agent
will overcome these difficulties while taking full advantage of our modular structure. New
perceptions which perform the SLOD calculations can be added without affecting any
existing functionality. New Behavior Modules can take advantage of SLOD without
deprecating existing modules.

Summary

Our team demonstrates that it is possible to produce complex behavior in a modular and
structured way. Our architecture is designed to make it easy to develop new primitive
behaviors and adapt how those behaviors are combined. The framework upon which our
team is constructed is well designed and should facilitate and further research in swarm
computing.

Authors

 Team Leaders: David Evans and David Brogan
 Undergraduate Team Members:

Keen Browne Jon McCune
Ye Peter Chen Sharmil Shah
Serge Eglemen Ford Sleeman
Rahul Gupta Chris Snook
Nathan Hoobler Arsalan Tavakoli
Sameer Huque Paul Turner
Derek Juba Mike Peck
Chris Mason Robbie Yan
Ben Mott

