
Abstract 
 
The RoboCup Simulator League provides an excellent platform for research on swarm 
computing.  The University of Virginia RoboCup team is interested in how group 
behaviors emerge from collections of actors making decisions based on local information.  
Our Wahoo Wunderkind simulator team is designed for experimenting with behavioral 
primitives defined over groups and mechanisms for combining those behaviors. 

Introduction  
 
A fundamental challenge for computer scientists over the next decade is to develop 
methods for creating, understanding, and validating properties of programs executing on 
swarms of communicating computational units. The key difference between swarm 
programming and traditional programming is that the behavior of a swarm program 
emerges from the total behavior of its individual computing units. Unlike traditional 
distributed programming, swarm programs must deal with uncertain environments and 
mobile nodes. The scientific challenges of swarm computing are to understand how to 
create programs for individual units based on the desired behavior, and conversely, how 
to predict high-level behavior based on the programs running on the individual computing 
units. 
 
We began the Wahoo Wunderkind FC during the summer of 2001 for the RoboCup 2001 
competition.  In the spring of 2002, we continued development with the inclusion of fifteen 
new undergraduate students.  Over the summer of 2001, we concentrated on developing 
a modular architecture for experimentation using the principles of swarm programming.  
Recently, our team has researched methods of combining actions, methods of using 
learning methods to incorporate noisy data into the player’s world model, methods of 
simulating the world to account for the infrequency of sensor data, methods for players to 
interpret the world using different simulation levels of detail (SLOD), and more complex 
actions.  Originally, we began with source code from the Mainz Rolling Brainz Team from 
the 2000 competition because it was well documented, freely available, and modular in 
design.  Our team is based on a clear modular structure, uses a MasterControl which 
has a WorldModel, a Body to execute Actions, and a facility to evaluate 
recommended actions from many Behavior modules. 

 
Swarm Programming 

 
Our work focuses on creating and reasoning about swarm programs in principled ways. 
We believe these programs are best implemented by combining primitives defined over 
groups of agents.  We are developing a library of primitive operations for swarm 
programs. A primitive defines a functional behavior of a swarm of devices, such as 
“disperse” or “flock”. These primitives are described formally in terms of constraints on 
the state of the devices in the swarm. For example, disperse has the constraint that no 
two devices are within a certain distance. In addition to functional behavior, non-
functional behavior of an implementation of a primitive is formally described.   With 
respect to robot soccer, this technique captures uncertainty in the agents’ environments, 
resilience to malfunction of other agents, and unpredictability of opponents’ actions.   
 
We are investigating different mechanisms for composing swarm primitives to create new 
behaviors. The goal is to reliably predict the properties of the resulting program. In 
addition, we hope to synthesize programs by combining primitives with known functional 
and nonfunctional properties.  We will take a functional description of a swarm program 
along with formal models of its execution environment and devices, and select a 
combination of primitive implementations from a library based on the desired properties. 



Architecture 
  

Our agent consists of a WorldModel, Body, and Behaviors, where each Behavior is 
implemented as a module.  MasterControl has a three-part architecture, divided into 
listen, think, and act.  Listen takes sensory data received by the agent through the 
Body and inserts the data into the WorldModel.  Think loops over each Behavior, 
determines the behavior’s usefulness and then returns a recommended Action.  Act 
commands the body to execute a recommended action.  
 

 
 
WorldModel stores all the information that comes from the server in an object oriented 
format.  The objects in the world have attributes such as position, velocity, and age.  The 
world model can be logged in an XML format for debugging with a replayer.  The 
flexibility of XML allows the future development of more complex debugging without 
deprecating our existing replayer that was based on the MRB replayer.  
 
The Body represents a layer of separation between the higher order control and the 
simulated robot.  The body has the ability to execute a complex action and return sensor 
information from the server.  All commands sent to the server pass through the body.  
This structure proved useful for debugging, since it allowed us to isolate unusual behavior 
by distinguishing between commands that were generated improperly and commands 
that were never sent.  Additionally, this structure will allow our design to support a future 
implementation on physical robots. 
 

Behavior Modules and Perceptions 
 
A behavior module consists of a behavior, perception, and a recommendation.  Each 
behavior represents a primitive desire or action such as dispersing, centering, or pushing 
up on the ball.  Some behaviors are designed to establish and maintain global properties 
of the team.  For example, disperse strives to maintain the property that no two players 
are within a certain distance of each other.  Other behaviors deal with special situations, 
often associated with the closest player to the ball, such as passing or shooting.  Each 
behavior has two main methods, one to determine its usefulness and the other to 
generate a Recommendation.  A behavior uses perceptions to view the world model in 
different levels of detail.  The check for usefulness is done to eliminate unnecessary 
calculations.  For example, if a player does not have the ball, it need not calculate the 
best direction to kick.  If a behavior is useful, additional perceptions are used to calculate 



information about the world state in order to calculate parameters for the suggested 
action.   
 
A perception is a collection of functions that operate on the world model to interpret the 
state of the game.  The complexities of different perceptions vary considerably, from 
merely checking the play mode to performing intercept calculations.  The Perceptions are 
written as utility libraries, so that multiple behaviors can share perceptions.  If efficiency 
becomes a problem, we intend to implement a caching facility in the perceptions. 
 
The Recommendations from each module are compiled into a list and returned to 
MasterControl.  MasterControl then uses combination logic, based on the 
principles of swarm programming, to select the best recommendation, and thus the best 
behavior for a particular situation.  The ActionList from the winning recommendation 
is sent to the body to be transmitted to the server. 
 
 

Recommendation and Action List 
  

The recommendation produced by each behavior module contains a grade and an 
ActionList.  An action list is a list of actions to be executed in one server cycle.  
Currently, a Grade is implemented as a floating point number ranging between 0 and 
100.  A grade of 0 represents impossibility, while a grade of 100 forces a specific action.  
For example, when the goalie judges that it can catch the ball, it forces the catch, even if 
another module such as center recommends the goalie move to the center of the box.  If 
two modules return recommendations of 100, the one that was returned first wins. 
 
All of our actions have an associated duration.  For instance, the kick command takes a 
complete server cycle, so the Kick Action’s duration is one.  Turn Neck’s can be sent 
more than once per server cycle, hence, they have a duration of zero.  We have 
successfully implemented a combination method that will strip the zero-duration actions 
out of losing Recommendations and append them to the winning Recommendation.  One 
result of this combination is that a player can dribble the ball up the field and turn his neck 
to be sure the ball stays in his line-of-sight.  This is significant because the 
DribbleBehavior and the ScanBehavior are strictly independent. 
 

Strategy 
  

We put most of our efforts into developing a defense.  The principles of swarm 
programming proved to be very useful in balancing the various requirements of a 
defensive player.  We have independent modules that seek to establish different, often 
conflicting, properties.  For example, don’t be too close to teammates, center on the ball, 
try to push the offside line up the field.  Vector summing is an effective tool for combining 
defensive positioning behaviors. 
 
Programming the offensive objectives of a soccer agent with swarm programming 
practices presents some new challenges.  Swarm programming is best suited to large 
numbers of relatively simple actions.  For the commands accepted by the soccer server, 
this is an excellent application.  However, an attack on goal by a single player is best 
implemented as a complex set of conditionals, usually including a long list of actions to 
be executed sequentially.  Behaviors of this type have a unique structure, and present a 
particular challenge in the development of combinational methods.  We are investigating 
how behavior based control can be combined with long range planning. 

 



 
Level of Detail 

 
Currently, we are researching methods to extrapolate strategic and high level information 
about the world and methods of directing all of the players at an individual level.  One 
technique of utilizing higher-level information about the world and enabling players to 
work and reason as a group is simulation level of detail (SLOD). 
  
SLOD will allow us to effectively control groups of soccer players as they coordinate and 
compete in a complex environment. The technique builds abstractions to represent the 
limitations of a player’s maneuverability and passing ability. Low-level, individual, 
abstractions are built using such data-centric methods as principle components analysis 
and temporal differencing. A hierarchy of SLODs, developed using optimization methods 
and heuristics, allows us to describe individual players and even groups of players in 
progressively simplified ways. These simplified versions of players expedite the 
evaluation of strategy search algorithms and provide a common framework for describing 
heterogeneous agents. The shared player description framework allows higher levels of 
control to abstract the implementation details of lower levels, thus supporting reusability 
and interchangeability. For example, a defensive strategy that entails a lot of movement 
from the defenders need only evaluate the energy level of the defensive players (a simple 
SLOD) without considering the overall state of each defender.  Likewise, the lower levels 
of control for the defensive players will use more detailed SLODs to partition the 
defensive portion of the field among the individuals. SLODs fit well with swarm 
programming as we can consider swarm primitives that operate at different levels. 
 
It is difficult to analyze one component of a soccer agent without compensating for a 
large number of external variables.  The implementation of simulation SLOD in our agent 
will overcome these difficulties while taking full advantage of our modular structure.  New 
perceptions which perform the SLOD calculations can be added without affecting any 
existing functionality.  New Behavior Modules can take advantage of SLOD without 
deprecating existing modules.   
  

Summary 
 

Our team demonstrates that it is possible to produce complex behavior in a modular and 
structured way.  Our architecture is designed to make it easy to develop new primitive 
behaviors and adapt how those behaviors are combined.  The framework upon which our 
team is constructed is well designed and should facilitate and further research in swarm 
computing. 
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