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1 Introduction

Team ChaGamma is a team of players who have models of environment, self,
and other agents as hidden Markov Models (HMM). Using the models, each
player can expect changes of the field and make plans of plays for the desired
goal states.

In multi-agent systems, each agent needs to have a world model that handles
interactions with environment and other agents. More complex the environment
and strategies is, harder it is to design such a model that can be used for planning
and decision-making. Qur approach to overcome this problem is to apply HMM
and 1ts learning method for building the suitable world model.

We also investigate coupled HMM (CHMM) to model cooperation with other
agents. In order to reduce the number of parameters of CHMM, we try to in-
troduce various assumptions that reflect agreements of joint intentions among
agents.

2 Segmentation of Environment through HMM Learning

Agent Model and Learning Method: In general, an autonomous agent is
modeled as a Merly-type HMM (shown in Figure 1(a)), in which, the agent’s
behaviors are formalized as follows: The next state (3<t+1>) is determined only
by the previous state (s{*)), and the agent’ action (a{**!)) is determined by
the current state transition (5<t>—>s<t+1>). This formalization, however, lacks the
effect of interaction between the agent and the environment. So, we introduce an
assumption, “the internal state and the environment has a probabilistic relation”.
In other words, an agent and its environment can be defined as a Moore-Merly-
type HMM (MM-HMM) (Figure 1(b)).

Segmentation of Environments: Suppose that a learner can observe a se-
quence of demonstrator’s actions {a{™ ... a{")} and changes of an environment
{e<0) .. .e(T>}. The purpose of the learner is estimate an HMM that can explain
the given action and environment sequences most likely. We can derive a learning
algorithm, an extension of Baum-Welch algorithm, for the MM-HMM]|7, 8].
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Using this algorithm, the learner will acquire a suitable HMM, whose state
transition reflects both of the internal intentions of the demonstrator and seg-
mentation of the environment. In the HMM, each state corresponds to a combina-
tion of an intention and a segmentation for it. In other words, the representation
of the intention and the segmentation are mixed in a set of states. While such
representation is enough to imitate demonstrator’s behavior, it is also useful to
know how the acquired HMM segments the environment.

The segmentation of the environment can be represented by a probability
function Pr(s|e) where e is an environment data and s is an internal state of
HMM. This probability can be calculated by the following equation:

Pr(s|e) = LTS Pris)
Pr(e)

Using this equation, we can know how the acquired HMM segments the envi-
ronment.

Figure 2 shows the separation of the environment the learner acquires by
learning two types of dribble plays. These graphs shows correspondence between
the environment (distance and direction to the ball) and states (each line in
the graph) as changes of probabilities Pr(s|e). In these graphs, we can see that
the HMM separate the environment into more fine states in the case elegant
dribble than the case of rough dribble. This separation is reasonable because
elegant dribble need fine-tuned control of the ball that needs fine separation of
the environment.

3 Symmetrically Coupled HMM

Symmetricity Assumption: In order to extend the HMM for the agent, we
must tackle a problem of complexity of calculation and memory of the HMM,
because the number of states increases exponentially when the agent has more
interactions among agents. One of important issues of the problem is general-
1zation performance, as the number of states or learning parameters increase,
the huge number of examples are required to guarantee the generalization per-
formance. In order to avoid the problem, I introduce symmetricity assumption
among agents as follows [6]:
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Fig. 2. Separation of Environment Acquired by Learning Rough and Elegant Dribble

symmetricity assumption
Every agent has the same rules of behavior. In other words, every agent
shares the same state transition rules with each other.

Based on this assumption, we derives a symmetrically coupled HMM (sCHMM)
shown in Figure 1-(c).

Discussion: The Number of Parameters in the Model: As mentioned be-
fore, the number of parameters in HMM is an important factor for generalization
performance of learning. In the case of coupled HMM, especially, the number of
parameters increase exponentially. Actually, if we use a simple coupled HMM,
the number of parameters in the state transition is |Se|” [Sa|™ + N |Se| |Sal~ T,
where N is the number of agents, and |Se| and |Sa| are the numbers of states of
environment and agent respectively. Compared with this, in the symmetrically
coupled HMM, the number of parameters is reduced to |Se|” |Sa|™ +|Se| |Sal™ .
We can also introduce the following additional assumption based on cooperative
properties of multi-agent systems.

No Ezplicit Communication Assumption: In the case of real soccer, players can
share their joint intention by sensing environment and other’s behaviors with-
out explicit communication. In such case, the transition of the agent state are
determined only by previous states of the environment and the agent itself. As a
result, the total number of the parameters is reduced to |Se|? |Sa|™ + |Se|[Sal’.

Shared Joint Intention Assumption: During a cooperation of multiple agents
each agent believes that all agents completely share the joint intention. This
means that each agent believes that other agents will behave as the agent wants.
In this case, the transition of environment states are determined only by the
previous states of the environment and one agent. This will reduce the number
of parameters to |Se|” |Sa| + |Se||SalV .



4 Related Works and Open Issues

Brand Et al. [1,3] proposed coupled HMM and its learning method, in which
several HMMs are coupled via inter-HMM dependencies. Jordan Et al. [5,2,
4] proposed factorial HMM and hidden Markov decision trees. Both of works
mainly focused on reducing the complexity in EM processes. They use mean
field approximation or N-heads dynamic programming to reduce the cost of
the approximation of posterior probabilities. However, they does not focused on
symmetricity in agent-interactions and generalization performance problem.
The proposed methods have the following open issues on the proposed method:

— The cost of calculation increase exponentially when structures of agents and
environments become complicated. In order to reduce the complexity, several
techniques like mean field approximation and N-head dynamic programming
should be applied to these models.

— The incremental learning will suit to acquire high-level cooperative behav-
iors. We may be able to realize the step-by-step learning using dependency
of the initial parameters.
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